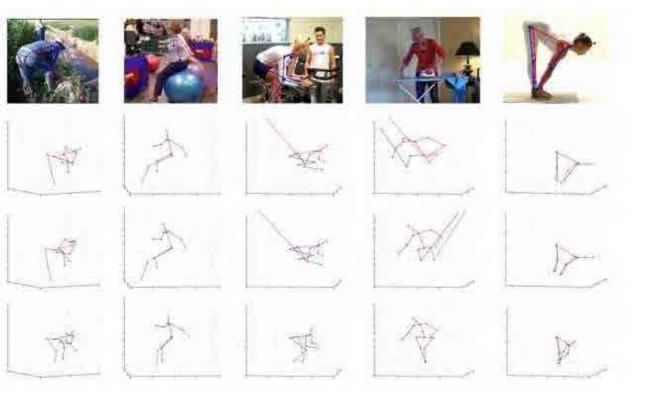


Main purpose? To explore the potential of posture correctness analysis and multimodal feedback delivery for different applications (ergonomics, yoga, others).



Tasks

- 1) Task scope definition
- 2) Dataset search and evaluation.
- 3) State of the art on building postural models and postural analysis.
- 4) Setting up an environment for posture classification from images.
- 5) Model concept proposal for posture analysis, based on angles. Built from reference datasets and literature. Limited scope.
- 6) First beta prototype set up.

CLIP as classifier

DEEPER ANALYSIS OF CLIP AS CLASSIFIER:

- Low zero-shot performance
- Significant improvement after fine tuning
 - Metrics on 82 classes:

	Precision	Recall	F1-score	MCC	Support
Weighted avg	0,861	0,859	0,857	0.855	3826

BUT STILL MARGIN TO IMPROVE !

CLIP as classifier

- How can we improve the performance ?
 - Balancing the classes in the dataset (μ = 186, σ =105)
 - Boosting classes that CLIP encounters issues with. (Already identified thanks to the representation based on hierarchical order groups. Confusion matrices)
 - E.g.:

F1 score: 0,5 | **36 train imgs**.

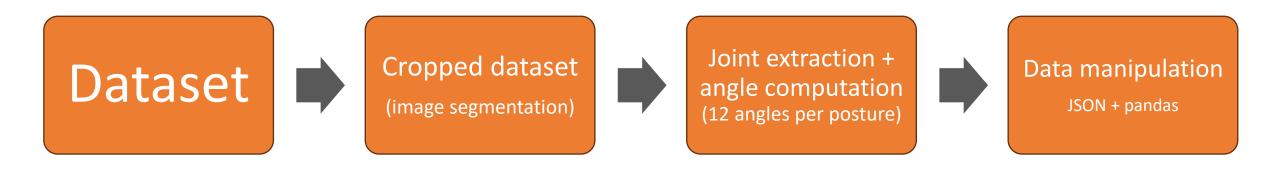
Chaturanga Dandasana

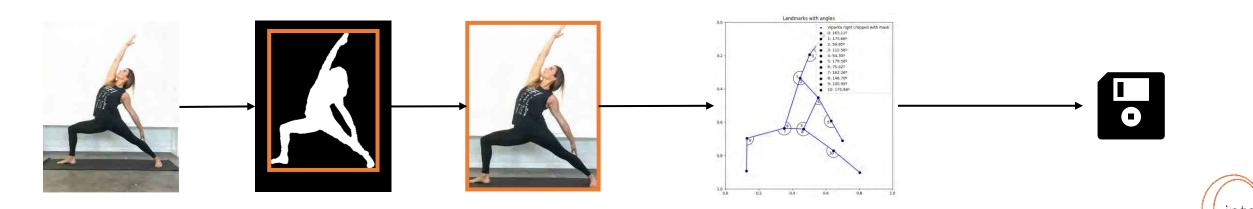
F1 score: 0,796 | **165 train imgs**.

- Combining with other types of images (infrared, joints, etc.)
- Trying to fine-tune various models of visual encoders

Mediapipe for pose evaluation

Angles extraction pipeline applied to all images of each class.





Posture evaluator model

Building the posture evaluator model.

- Various attempts:
 - Rules engines
 - KNN
 - XGBoost

Trained and tested using synthetic data generated from the angle's extraction pipeline.

• Best results: XGBoost. 1 model by posture.

	Precision	Recall	F1-score	Support
Average	0,981	0,982	0,982	1000

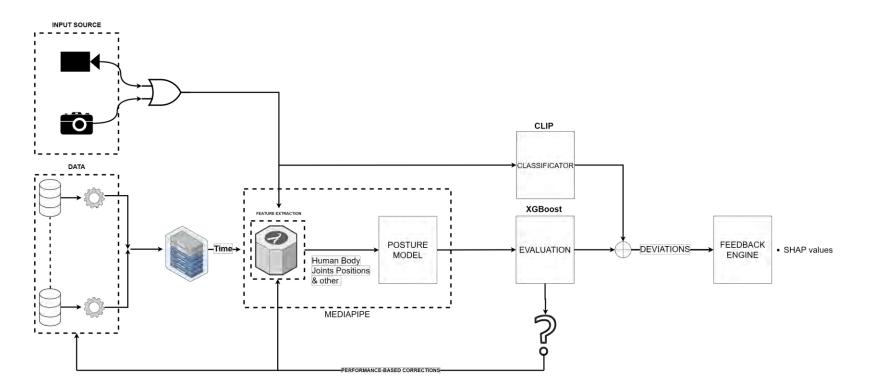
Still necessary

to evaluate it

on real data.

Results

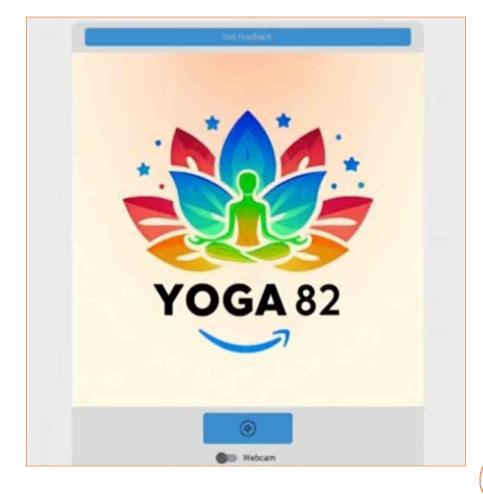
- Results:
 - Journal article:
 - Exploring the Use of Contrastive Language-Image Pre-Training for Human Posture Classification: Insights from Yoga Pose Analysis
 - <u>Yoga-82 app</u>



Results

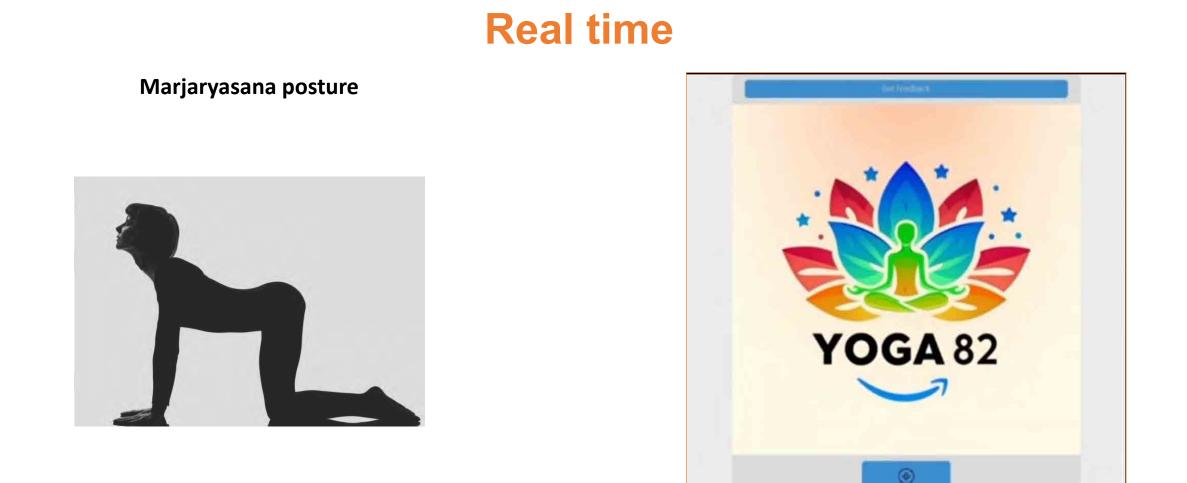
Real time

Virabhadrasana II posture



ipto

Results

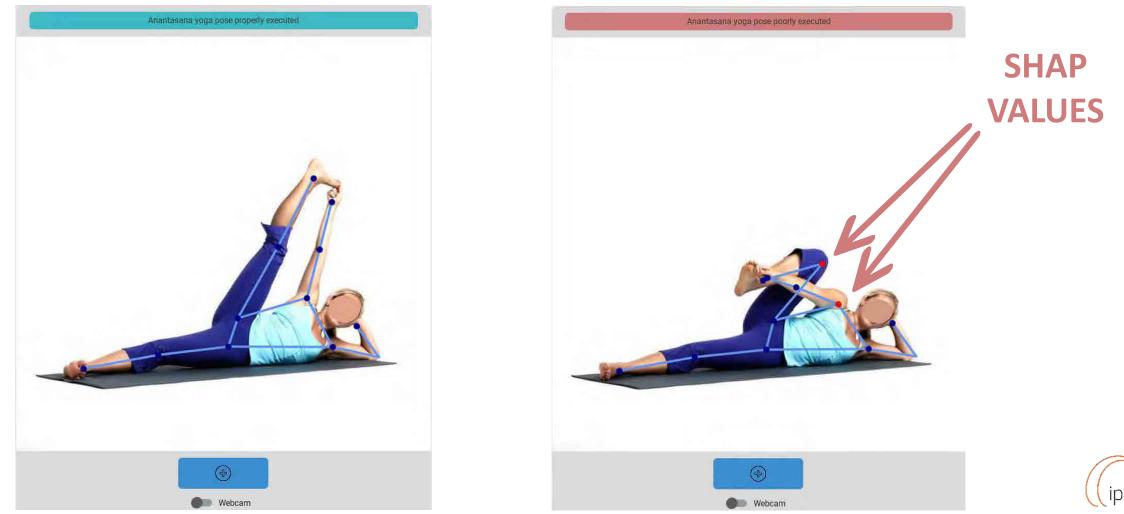


Webcam Webcam

ipto

Results

Image based feedback



Zero-shot sonorizing of video sequences

Zero-shot sonorizing of video sequences

Entanging Al-audio synthesis models and multimodal representations

Signal Processing Applications Group GAPS – IPTC - UPM

How should this scene sound?

5 ((iptc

Should this sound similar?

The Question

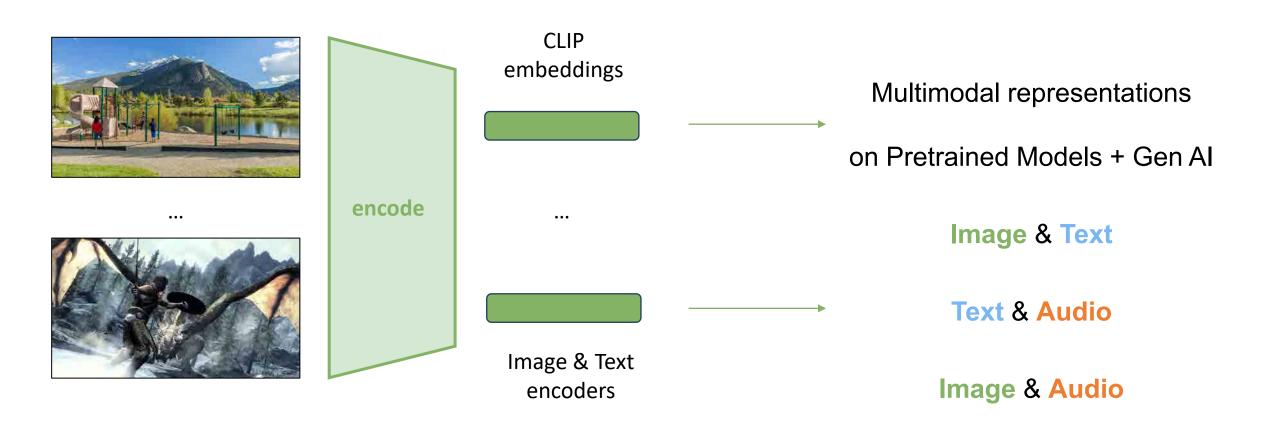
And a shared goal

What is a suitable audio for a given image or video sequence?

How do we <u>search</u> or <u>create</u> a matching audio?

How should we **evaluate** if this match is *coherent*?

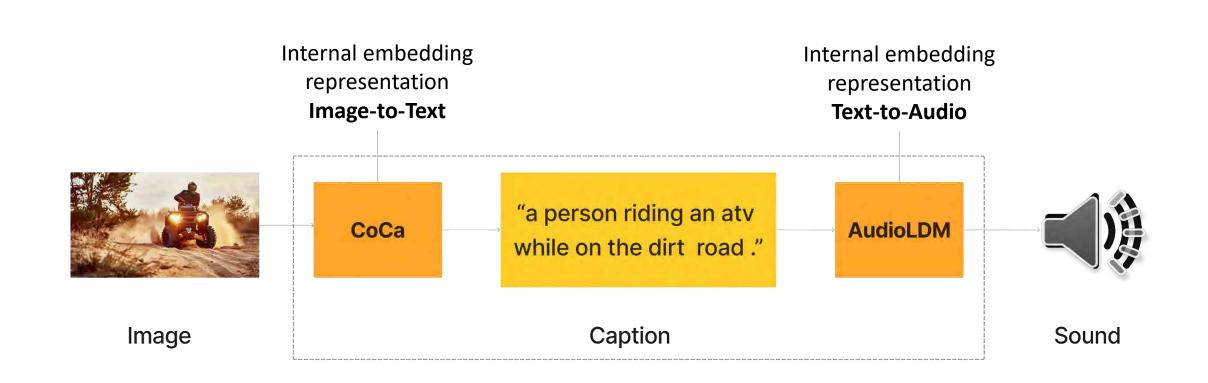
Two ways to address the task + a novel way to evaluate



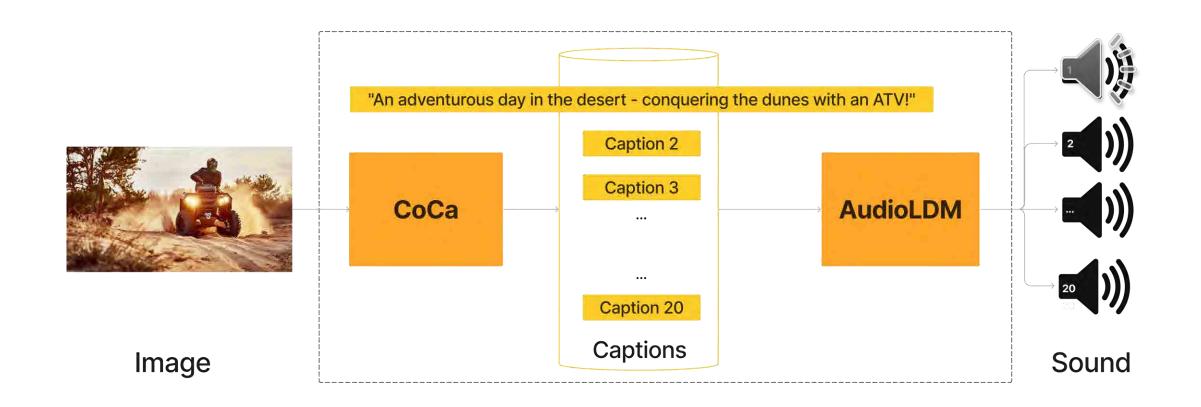
Zero-shot sonorizing of video sequences

María Sánchez Ruiz, Mateo Cámara Largo, J.L. Blanco Murillo

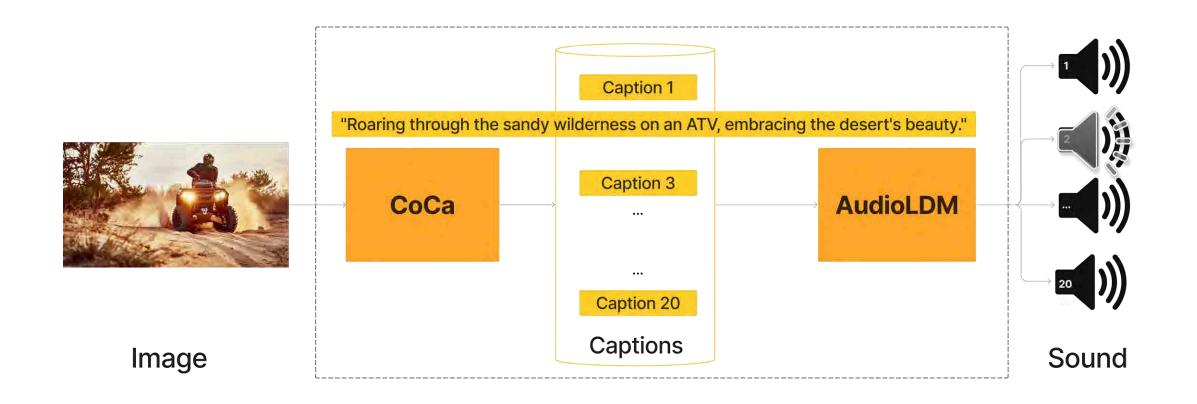
Text-guided sonirization



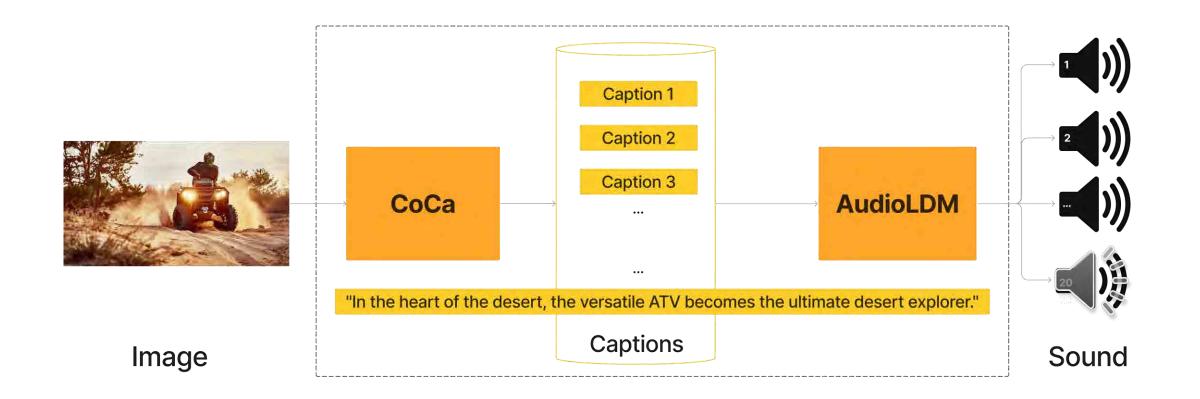
Multi-captioning



Multi-captioning



Multi-captioning



54 (iptc

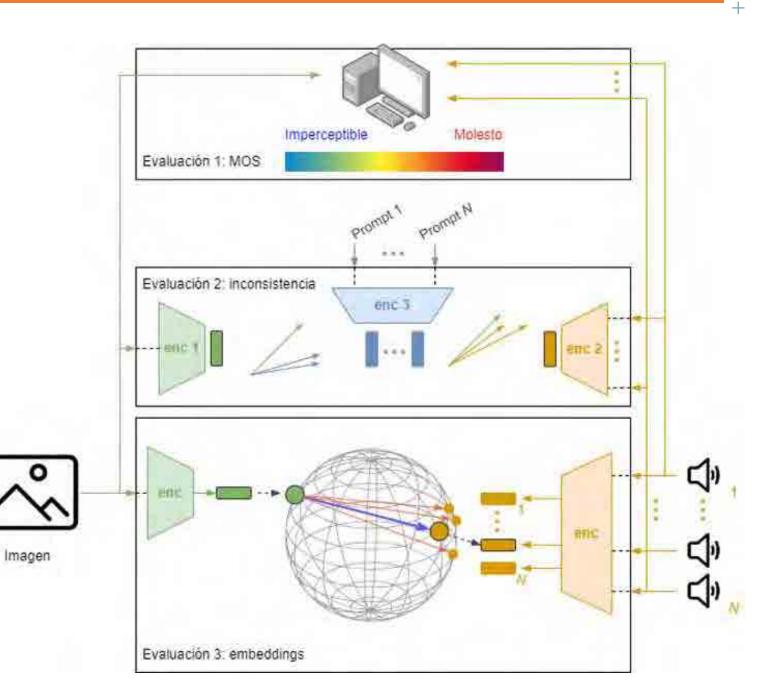
Evaluation

1. Subjective user experience.

Embeddings consistency.

3. Embeddings **projection**.

2.



Evaluation 1: MOS

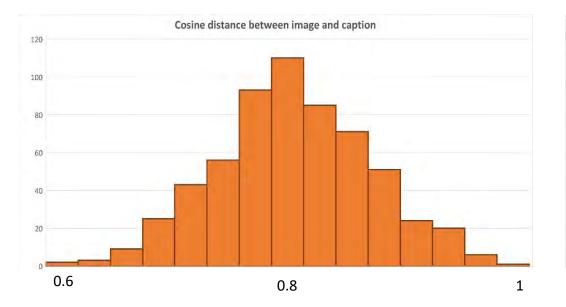
56

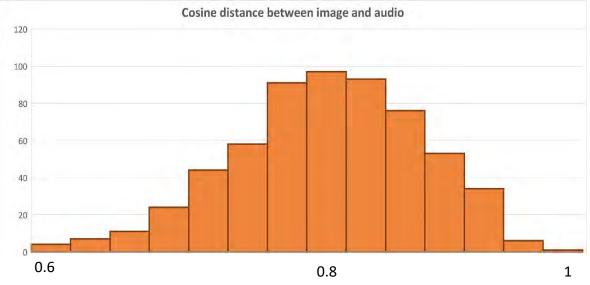
+

Evaluation 2: Inconsistency

Image-Caption Cosine Distance

Image-Audio Cosine Distance





+

Evaluation 3: Embedding distance

Embedding Distance Scheme

ref_audio (1) gen_audio (N) USER INPUTS ref ima (1) ob_img (N) EMBEDDINGS get_audio_embed get image embed EXTRACTION ref_img_embed (1) ob_img_embed (N) ref_audio_embed (1) gen_audio_embed (N) COMPUTATIONS compute slerp compute_obj_audio_embed →obj_audio_embedding (N) get_distance slerp embed (N) DISTANCES (N)

Summary of Validation Test Results

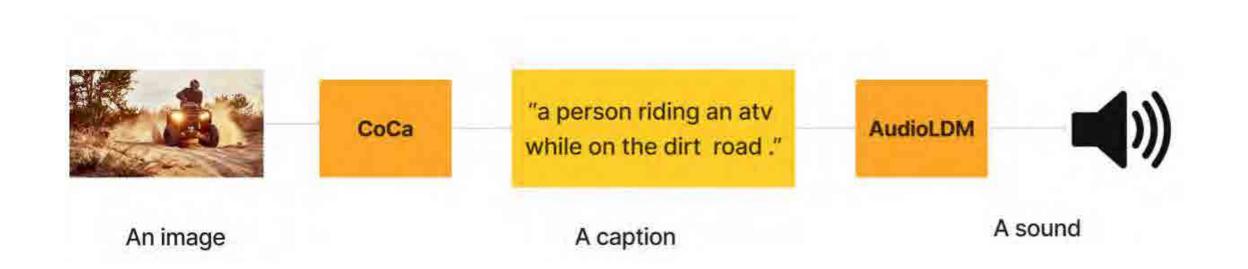
Test	Audios	Frames	Mean	STD
1	ref_audio, gen_audio	ref_img, ob_img	0	0
2	ref_audio, gen_audio	ref_img, ob_img	0	0
3	ref_audio, gen_audio	ref_img, ob_img	0	0
4	ref_audio, gen_audio	ref_img, ob_img	24.9	2.5
5	ref_audio, gen_audio	ref_img, <mark>ob_img</mark>	24.7	2.5
6	ref_audio, gen_audio	ref_img, ob_img	12.5	3.2
7	ref_audio, gen_audio	ref_img, ob_img	12.5	3.2

- 1. Valid sonorization approach & evaluation procedure
- 2. Consistency of the metrics with user subjective assessment.
- 3. Embeddings **consistency** metric is robust.

+

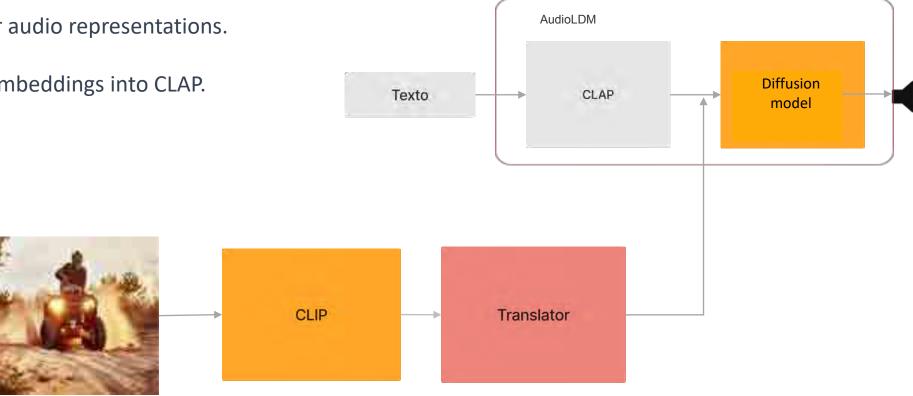
Entanging Al-audio synthesis models and multimodal representations

CoCa-AudioLDM integrated model.



CLIP-T-AudioLDM

- Eliminate the need for CoCa. ٠
- Utilizes CLAP for audio representations. ٠
- Translate CLIP embeddings into CLAP. ٠



测

CLIP-T-AudioLDM

18 models implemented:

• 2 different hidden layer dimensions: 256 and 512.

Embedding

• 3 different cost functions: MSE, CD and CL.

CLIP

• 3 training databases: Audiocaps (57K), WIT(10K), Conceptual Captions(10K).

Dimension laver

input = 512

Translator - Cost function constractive

learning

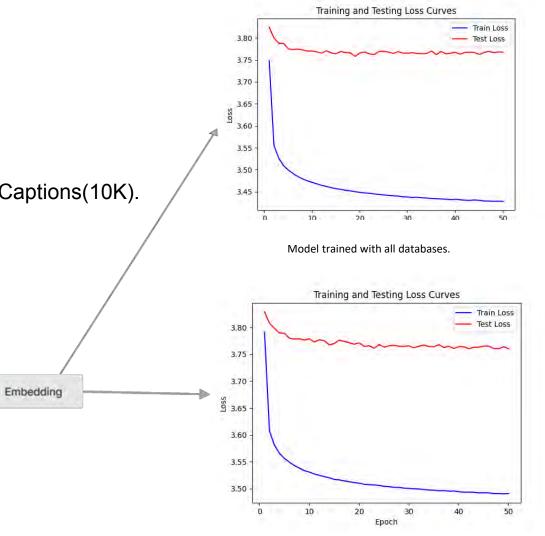
Dimension layer

Learning rate = 0.001

hidden = 256

Dimension layer

output = 512



Texto

Evaluation of the two models

CoCa-AudioLDM

Metric	Gigs	Horses	Kids	Piano	Train	Average	Std desviation
FAD	17	12,43	10,88	4,78	15,56	12,03	4,65
DistanceMetric- Pipeline	23,24	24,85	24,18	24,82	28,5	25,12	2,00

FAD and Distance Metric-Pipeline metrics for the CoCa-AudioLDM integrated model.

CLIP-T-AudioLDM

Model	DROP	Learning rate	Gigs	Horses	Kids	Piano	Train	Average	Std desvia tion
	0	0.001	14,12	23,85	16,25	10,5	25,8	18,11	6,51
CL512 C	0.5	0,001	12,59	22,69	17,67	28,48	24,9	21,27	6,23
	0,5	0,002	11,43	22,34	17,51	30,18	27,13	21,72	7,5

FAD metrics for the CLIP-T-AudioLDM integrated model.

Model	DROP	Learning Rate	Gigs	Horses	Kids	Piano	Train	Average	Std desv iation
CL512	0		14,12	23,85	16,25	10,5	25,8	18,11	6,51
	0,5	0,001	12,59	22,69	17,67	28,48	24,9	21,27	6,23
		0,002	11,43	22,34	17,51	30,18	27,13	21,72	7,5

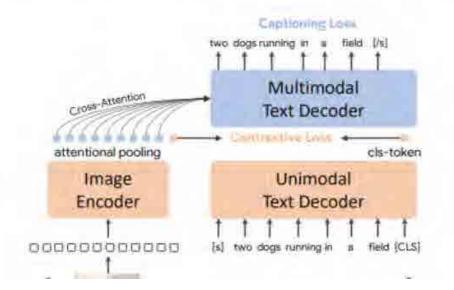
Home CoCa-AudioLDM CLIP-T-AudioLDM

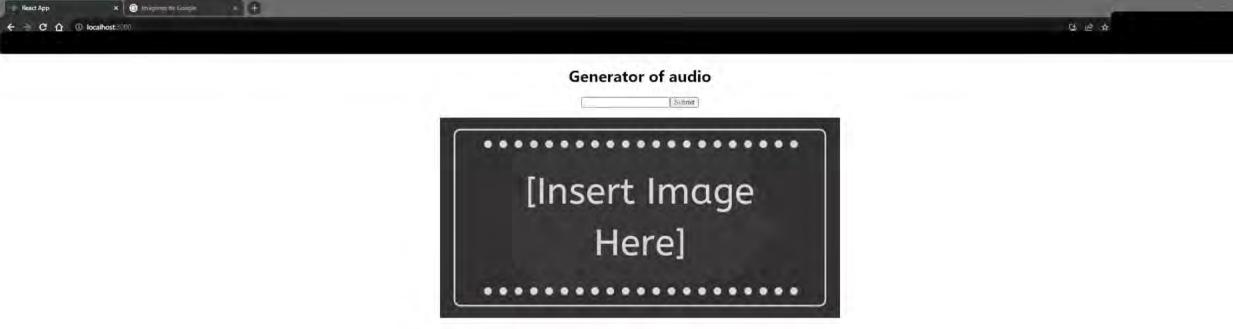
Generator of Audio from Images

Welcome to our platform where two powerful models collaborate to generate audio from images. Let's explore the capabilities of these models:

Contractive Captioner (CoCa)

CoCa is designed to describe the content of an image. It employs an image encoder and a text decoder to obtain unimodal text representations. These representations are then used to create multimodal image and text representations. CoCa captures both global and regional characteristics of images and texts, making it versatile in various tasks such as visual recognition, image caption generation, and more.



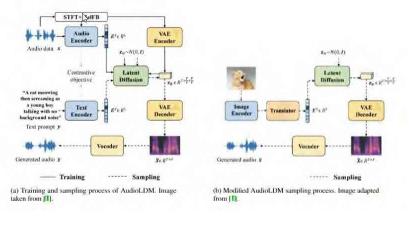


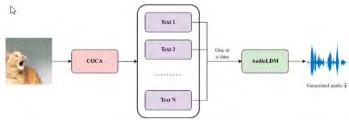
Results: submitted & under preparation

International Conference paper: Del Visual Al Auditivo: Sonorización De Escenas Guiada Por Imagen

arxiv working draft:

Image-conditioned audio generation and evaluation using deep learning models





66 ((

Results: and more than just that...

María Sánchez Ruiz Masters Degree: DTU+MUIT ETSIT

12/12

Laura Fernández Galindo Masters Degree: MUIRST-ETSIT

10/10

Amazon Team. Particularly to our coworkers:

Guilia Comini

Adam Gabrys

