IPTC-Amazon collaboration

Meeting (June 15th, 2023)

www.iptc.upm.es

IPTC-Amazon: Agenda

Agenda:

- Projects:
 - Sign language motion generation from high level sign characteristics
 - Speaker diarization with multimodal inputs
 - Pose and spatial movement as input for dynamic content search & generation
 - Entangling Al-audio synthesis models and multimodal representations
 - Zero-shot sonorizing of video sequences
- Dissemination

Sign language motion generation and analysis

Index

- Our Objective
- What have we done?
- Previous Results & Errors
- The Solutions
- Evaluation Metrics
- Our Results

Our Objective

<hamnosys_manual> <hamfist/> <hambetween/> <hamfist/> <hamthumbacrossmod/> <hamextfingeru/> <hampalmd/> <hamshoulders/> <hamlrat/> </hamnosys_manual>

Hand configurations

Landmarks

What have we done?

Transformer

 Based on a spanish to english translator transformer

Previous Results & Errors

Database

Interpolation

Previous Results & Errors

Transformer performance

Intermediate dimension

The stop token

DATABASE Filling with zeros

DATABASE Mirror Effect: Mediapipe

DATABASE Interpolation

NO INTERPOLATION VS ONE ROW OF INTERPOLATION

TRANSFORMER PERFORMANCE Changing the parameters

- Batch Size \rightarrow 32
- Number of Epochs \rightarrow 1000
- Number of Heads \rightarrow 6
- Intermediate Dimension \rightarrow 4096
- DropOut \rightarrow 0.3
- Learning Rate \rightarrow 0.001

TRANSFORMER PERFORMANCE Changing the parameters

DROPOUT 0.0 VS DROPOUT 0.3

INTERMEDIATE DIM 2048 VS INTERMEDIATE DIM 4096

13

TRANSFORMER PERFORMANCE The stop token

- Intercalate ceros between frames
- Separate training for stop token and generation of landmarks

EVALUATION METRICS

DTW

DTW → Test Dataset

DTW \rightarrow Validation Dataset

DTW → Mean Value

VIDEOS

Generation of landmarks

Generation of videos

Comparing original vs predicted

RESULTS

MEAN DTW \rightarrow 7,112

Future Lines

Transformer

Data Augmentation

The Stop Token

Publish the results

Creation of the database

Transformer and its performance

Evaluation Metrics

Analysis of the parameters

Speaker diarization with multimodal inputs

IPTC-Amazon: Index

Index:

- Previous approach to the problem
- Updated approach
- Results
- Improvements and future lines
- Conclussions

Initial approach

Initial approach

Problems found:

 Using convolutional networks for the mediapipe-generated images was a bad idea due to the high similarity between all of them.

Solutions proposed:

- Use graph convolutional networks
- Use directly the **landmarks** provided by mediapipe

Actual approach

22 (iptc

Actual approach: experiments

1) Raw landmarks:

Using the 478 x,y and z landmarks concatenated into a big [1, 1434] tensor

2) Distance from a point:

Using the 478 landmarks distance from a fixed point of the face concatenated.

The point chosen was the 82, corresponding to the nose

3) Distance from a point to the lips:

Using the 21 landmarks (lips) distance from a fixed point of the face concatenated. The point chosen was again the

82, corresponding to the nose

After training the network and obtaining low losses, we move on to testing part. To do so we will use 2 scenarios: 2-face experiment and 7-face experiment.

2-face experiment

7-face experiment

Results

Raw Landmarks

Test with 2 faces

Test with 7 faces

Results

Distance

Test with 2 faces

Test with 7 faces

Results

Distances lips

Test with 2 faces

Test with 7 faces

Improvements and future

Filtering the results To filter spurious miss predictions

> Face 1 0-0-0-0 Face 2

Accuracy 0.725

Improving the resolution of the images

Including temporal component in images

Temporal information

Main purpose? To explore the potential of posture correctness analysis and multimodal feedback delivery for different applications (ergonomics, yoga, others).

Tasks

- 1) Task scope definition 🗸
- 2) Dataset search and evaluation.
- State of the art on building postural models
 and postural analysis.
- 4) Setting up an environment for posture classification from images.
- 5) Model concept proposal for posture analysis, based on angles. Built from reference datasets and literature. Limited scope.
- 6) Multimodal feedback by using virtual assets (e.g. avatar)
- 7) Incremental prototype set up.

CLIP as classifier

DEEPER ANALYSIS OF CLIP AS CLASSIFIER:

Yoga-82 dataset

- Low zero-shot performance
- Significant improvement after fine tuning
 - Metrics on 82 classes:

	Precision	Recall	F1-score	MCC	Support
Weighted avg	0,861	0,857	0,856	0.855	3826

- Confusion matrix:
 - <u>Problem</u>: Too big, 82 classes.
 - <u>Solution</u>: **Representation based on hierarchical order groups** to find common problems classifying.

CLIP as classifier

- Representation based on hierarchical order groups
 - Standing group example:

³² (iptc

Mediapipe for pose evaluation

- <u>Mediapipe</u> for landmarks extraction and angle computing.
- From previous approximation -> No significant error difference between cropping & cropping + reshaping

Mediapipe for pose evaluation

• Pipeline applied on 66 images of each class -> Analysis based on 5412 images

Analysis based on 66 images by posture

Mediapipe for pose evaluation

- Pipeline applied to 66 images of each class:
 - 5412 images
 - 11 body angles per image

Reverse warrior pose distribution of all angle errors

Binary classifier

- Objective: Binary classifier for good/bad posture differentiation
 - Creation of a data set of 26 classes of postures, each of which is subdivided with examples of correct and incorrect execution.

- Problems finding the correct classification criteria.
 - Counting criteria: N° of errors per joint > mean error per joint & N° of errors per joint > mean standard deviation per posture.

Image predictions	Wrong image predictions	Precision
199	89	0.553
Good		

Next Steps

- Improving performance differentiating between "correct" and "wrong" postures.
 - Gathering a specific dataset to train a classifier?
 - Ma
- Setting-up a proof-of-concept system prototype with (some) feedback on posture evaluation.

Audio Generation using Deep Learning

Sound Generation from Images

Basic Pipeline

ipto

DEMO

https://github.com/Laurafdez/Generator-of-audio-from-images

Two research lines

Research Line 1: Pipeline without using captions

Audio Generation from Images

Research Line 1: Translator

•Audiocaps dataset texts: Text data from the Audiocaps dataset used for training AudioLDM.

•Translator generates embeddings: The Translator model generates embeddings for comparison with CLAP embeddings.

Caption 1

Caption 2

Caption 3

Caption 20

Captions

Test: 17455 Train:39733 CLIP

Embeddings

ECM cost function

Research Line 2: Pipeline using captions

Audio Generation from Images

iptc

Objective Metrics

Through embeddings

Objective Metrics

Through embeddings

Generated audio

Image-Audio Consistency

Audio embed 1

ImageBind: https://arxiv.org/abs/2305.05665

Subjective Metrics

Working on...

- Audio Quality
- Audio-Image Coherence
- Caption Reflects Visual Content
- Caption Reflects Acoustic Content

How does it sound to you?

"a person walking away from the water in gaming ."

High, Medium, or Low

- Develop quality metrics for both Audio and Image-Audio Coherence to be used in Research Lines 1 & 2
- Complete and Evaluate Research Line 1: Image-to-audio without captions
- Evaluate different strategies for caption selection in Research Line 2.

Technical Report Audio Generation from Images

Dissemination: Publications

Acknowledgement:

- "XXX's scholarship has been supported by Amazon through the IPTC-Amazon collaboration initiative"
- Promote joint authorship (IPTC-Amazon)

Possible targets (Open Access):

- Applied Sciences. (IF: 2.838, ISSN: 2076-3417) Special Issue "Audio, Speech and Language Processing"
- Biosensors (ISSN: 2079-6374, IF: 5.972).
- Online conferences:
 - ECSA-10 (Electronic Conference on Sensors and Applications. 2023)

• • • •

General meeting in September/October

- Dissemination: open event
- Possibility to organize an onsite (+ online) event:
 - Detailed presentation of all projects.
 - General presentation of the main results.
 - Presentation of Amazon at IPTC-UPM.

Great Summer and Vacations!!!

Many thanks

Information Processing and Telecommunications

Center

Technologies for creating high economic

and social value