
   

	

   

 

 

 

 

 

Abstract  

This document contains the results of the CODA WP3.1 task, related to short term prediction of ACTO 
tasks based on data-driven models. The document describes two different approaches to perform this 
prediction, their architectures, training processes and validation. The purpose of this model is twofold, 
aiming to provide a rich input to predict the evolution of ATCO mental state, and helping elicit the 
collection of tasks to be implemented to assist the adaptive automation share tasks between the 
controller and a supporting digital assistant (automating some of the task types).  

In this version of the document, both approaches are completely described. The results of the first, in its 
current state, although potentially promising, are demonstrated to be not good enough, due to data 
limitations. So, a second approach, based on a data-driven divide-and-conquer strategy is also described. 
This second strategy has been also implemented and its results reported in this second version of this 
document. Its objective is not so ambitious, but more realistic, and although it may have some impact on 
the final implementable adaptive automation strategy, the results show it may be good enough and 
specially much more explainable. 
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1 Introduction 

This document contains the results of the CODA WP3.1 task related to the short-term prediction of ATCO 
tasks based on data-driven models. The document describes two approaches to performing this 
prediction, their architectures, training processes and validation. The purpose of this model is twofold: 
aiming to provide a rich input to predict the evolution of the ATCO mental state and helping elicit the 
collection of tasks to be implemented to assist the adaptive automation shared tasks between the 
controller and a supporting digital assistant (automating some of the task types). Its place within the 
complete CODA system is depicted in Figure 1. 

 

Figure 1:  Potential ATCO task predictor roles in CODA architecture 

Ideally, the task predictor would calculate a list of time-stamped tasks for the near future, which will later 
become an input for the rest of the CODA system. In any case, predicting ATCO tasks with a high degree 
of fidelity is a big challenge. As an indicator of the difficulty to do so, the CODA Advisory Board was 
explicitly asked about the feasibility of such a prediction approach in the Advisory Board Meeting held on 
15th December 2023. After describing the task prediction model being designed and implemented in 
CODA, the AB members were asked three questions related to task prediction for their consideration. 

 

 

Figure 2:  Questions to CODA AB on ATCO task prediction feasibility and role  
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The AB members directly provided no answer, and after an indication from the CODA team on the 
difficulty to answer them without additional research, no further reaction was received, which was 
understood by the CODA researchers as an agreement to the difficulty to fully address the problem. 

After a first approach for the implementation of WP3.1 task was followed, results that were not 
considered good enough were obtained, with our current available data. Therefore, the CODA team 
decided to define a second approach. Its objective is not so ambitious but more realistic (i.e. not trying to 
provide exact task execution timestamps), and depending on the final adaptive automation strategy, it 
could be good enough. 

This version of the document completely describes both approaches, their results and validation.  
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2 ATCO Task Prediction Problem Statement 

2.1 Why an ATCO Task Prediction Model? 

Developing an ATCO (Air Traffic Controller) task prediction model is a critical element of CODA 
as it forms the basis of the task allocation strategy based on adaptive automation principles. 
Predicting future tasks for ATCOs can significantly improve safety, operational efficiency, and 
overall controller performance by enabling management of the controller workload and the 
associated mental state.  

If neurophysiological assessment can give information on the current state of operators to 
improve the interaction between humans and AI-based systems, the next step would be to be 
able to predict the future mental states to intervene in advance and avoid unwanted situations 
(e.g. workload peaks) that can immediately impact performance and be hard to recover from. A 
potential approach to achieve this would be to anticipate which tasks will need to be executed 
by the operator and the AI based systems in the future, so that time intervals with a high rate of 
concurrent and complex tasks would be related to workload peaks.  

By forecasting which tasks controllers (with the support of AI based digital assistants) will need 
to perform, the model would allow for the identification of potential high-workload periods or 
complex situations before they arise. This foresight would support effective task allocation to 
the controller or to the digital assistants, potentially mitigating controller stress and fatigue and, 
therefore, enhancing decision-making. Furthermore, the model would help automate task 
scheduling and prioritisation, streamlining operational workflows and reducing human error. As 
a result, the task prediction model would improve the management of high-density traffic by 
addressing variability in traffic patterns and controller responses. 

2.2 State of the art of task prediction models 

This section describes some approaches in the literature for measuring, forecasting, and 
predicting controller tasks in this high-risk environment. Additionally, it mentions the challenges 
and limitations faced by task prediction, such as the dynamic nature of air traffic, and the 
requirements any method aimed at this must meet, including data security and privacy and real-
time technological infrastructure.  

2.2.1 Introduction 

Air traffic controllers (ATCOs) play a crucial role in maintaining the safe, orderly, and efficient 
flow of air traffic while maintaining effective communication with pilots to ensure compliance 
with aviation clearances. These professionals serve in roles such as tower, en-route, area, 
approach, oceanic and terminal radar Controllers. They have various duties and responsibilities: 
communication, traffic management, safety assurance, emergency response, navigational 
assistance, documentation, training, and ongoing professional development. The working 
environment of an air traffic controller is often fast-paced, dynamic, and highly demanding. 
Controllers must remain focused and attentive to their workspace's multiple screens, radar 
displays, and communication systems. They work in a regulated environment, following 
procedures and protocols to ensure aircraft's safe and efficient movement, but with significant 
degrees on freedom in the strategies they apply. Their multi-faceted role includes critical 
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responsibilities such as air traffic control clearances, contact procedures, instrument and missed 
approaches, radar vectoring, safety warnings, speed adjustments and traffic advisories, all with 
their associated tasks. All these tasks include the meticulous confirmation of pilots' readbacks 
in air ground communications, monitoring of related manoeuvres, ensuring that vital 
instructions on altitude, flight levels, track, radar vectors and other parameters are followed 
accurately.  

ATCOs also perform other tasks, such as maintaining constant vigilance, ready to address any 
potential disruptions or delays affecting the aircraft's trajectory. The most relevant controller 
task, critical from the safety point of view, is providing radar heading vector guidance or other 
separation-oriented clearances and instructions to avoid proximate traffic in conflict. Also, 
sequencing related clearances and instructions that allow a more efficient traffic flow. Their 
commitment to tracking and relaying critical traffic information continues until the aircraft lands 
safely or moves to the next ATCO responsibility sector.   

When operating within a high-stakes environment, safety and efficiency are paramount, as 
described in [1]. Prediction models are crucial in identifying potential incidents or issues in 
advance, enabling ATCOs to take proactive measures to prevent risks, minimise damage, and 
enhance security. Additionally, anticipating future requirements allows ANSPs to allocate 
resources more efficiently, reducing costs. The general moto of CODA project is that task 
prediction and the use of adaptive automation might also aid in process optimisation, potentially 
leading to ATCO error reduction, and assuring higher levels of quality and efficiency. 

2.2.2 Methods for ATCO Task Prediction 

Some different approaches for ATCO task predictions are described next. 

2.2.2.1 Historical Data Analysis 
Analysing historical air traffic patterns is essential for efficient and safe airspace management. 
This process involves collecting and studying data on past flights, including routes, schedules, 
aircraft types, weather conditions and congestion. This enables aviation authorities to forecast 
future traffic demand, optimise routes, plan airport expansions, proactively manage congestion, 
allocate resources efficiently and manage airspace safely.   

A key concept here is traffic complexity, with many attempts to define, measure and predict it 
from historical flight analysis. For instance, the early paper from Chatterji & Sridhar [2] 
presented sixteen complexity measures describing air traffic patterns. Other classical and 
modern attempts to study this problem can be found in [3] or [4].  

With a much higher granularity, the paper from D. Karikawa [5] presents the COMPAS (Cognitive 
system Model for Simulating Projection-based behaviours of Air traffic controllers in dynamic 
Situations) system, which allows automatic ATCO task identification and visualisation tools 
based on cognitive system simulation of an ATCOs.  

Of particular interest for CODA is the existence of the CRIDA data warehouse, which has stored 
historical data since 2018 on flight plans, radar tracks, sector configurations and ATC activity of 
ENAIRE. A system called ATON, quite similar to COMPAS, is in place in the CRIDA data warehouse 
to define ATCO activity. This system can semiautomatically detect ATCO actions (in the form of 
events). This ATC activity, in the form of tasks being executed, will be used both as an input to 
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the CODA ATC task prediction system (in the form of previous and current tasks being 
performed) and as the label for the supervised training (for future tasks, structured as a plan).  

In summary, authorities can anticipate peak periods and allocate resources by knowing past 
traffic trends, ensuring that airports and air traffic control centres can cope with traffic peaks. 
Historical data informs infrastructure decisions, ensuring that airports can accommodate future 
growth without compromising safety. In other words, analysing historical air traffic patterns 
provides critical insights for authorities to anticipate and prepare for impending tasks, ultimately 
enhancing airspace management efficiency and safety and benefiting the aviation industry and 
passengers. In general, this analysis is performed at the strategic level, not in real-time; this idea 
of complexity may also be relevant for real-time task prediction, as we will see. 

2.2.2.2 Real-Time ATCO Workload Prediction 
In this section the following approach is discussed: Predicting controller workload levels can be 
considered a pattern recognition problem and is, therefore, suitable for data-driven learning 
algorithms. To this aim, several potential strategies exist.  

The first is to directly link workload with the traffic situation. This is the approach followed, for 
instance, by the paper mentioned in the previous section [2], which linked the complexity 
measures with the ATCO workload using a neural network. Pang also followed the same 
approach [6]. In this work, the problem of predicting ATCO workload based on the 
spatiotemporal layout of the airspace is considered a dynamically evolving time series graph 
classification task. This study proposes introducing multiple historical graphs into the model to 
predict the workload level at the next time stamp. Moreover, the spatiotemporal layout of the 
graph structure varies at each timestamp (i.e., the number of nodes and the connections of the 
graph edges), giving rise to a dynamic graph classification problem. The paper also presents a 
dynamic density model, building a regression model to find linear relationships between traffic 
complexity factors and ATCO workload. However, dynamic density metrics do not consider 
human cognitive capabilities, the primary source of real-world ATCO workload sources.  

Related to the link between complexity and ATCO Load, the paper [7] presents a methodology 
to analyse and react to the expected traffic flows that will take advantage of its more predictive 
ATM network. The paper describes eTLM (Enhanced Traffic Load Monitoring), which aims to 
react to traffic complexity by dynamically adjusting the sector configurations to real traffic 
situations. 

2.2.2.3 Real-Time ATCO Task Prediction 
An alternative to direct workload derivation from traffic advocated in the CODA project is first 
to identify controllers’ tasks. This has the additional advantage of enabling task distribution in 
the AI-human team. Next, we will focus on previous attempts to monitor/predict the controllers’ 
tasks/actions.   

The paper [8] describes a prediction model derived through supervised learning, where the 
target variables are planning controller actions (including altitude, speed and course changes). 
At the same time, the inputs are ADS-B data (aircraft 4D trajectory) and the spatial information 
about the sector, collected and processed from Aeronautical Information Publication (AIP). The 
system automatically derived the sector entry and existing points and identified the needed 
ATCO interventions with reasonable accuracy (99% for vertical manoeuvres, 80-90% for 
horizontal actions).   
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In [9], a Deep Learning approach is used to model actions related to conflict detection and 
resolution. It covers both the prediction of the time of the intervention and the type of 
resolution. For us, this approach may be especially interesting, as in the CODA problem (as in 
the one addressed in the paper), it is not only important to know what action will need to be 
performed but also when.  

In any case, it should be emphasised that the previous literature focuses on actions related to 
conflict resolution. At the same time, our needs are more extensive, as we need to incorporate 
other tasks related to vigilance, routine communications, etc. 

2.2.3 Challenges and limitations 

ATCO task prediction has many different potential difficulties and limitations. Some of them will 
be summarised below:  

1. Traffic uncertainty: Multiple unpredictable elements can produce unexpected changes 
in flight plans, even in the short term, during the different stages of flight, such as 
modifications derived from atmospheric conditions (especially with turbulent weather), 
conflict-induced modifications, and onboard emergencies.   

2. ATCO task execution variability: although ATM is heavily regulated, and the types of 
tasks and typical interventions are identified, different ATCOs may adopt different 
strategies and solutions to similar problems, and the order of their execution may 
change.   

3. Constraints on data security and privacy: To predict ATCO tasks, lots of operational data 
(at least sector definitions, flow definitions, recorded flight plans, recorded tracks, and 
ATCO actions) will need to be accessed. Some of them may have security/privacy 
problems, which must be solved.  

4. Scalability, the system's capability to handle large data volumes, must be guaranteed to 
maintain effectiveness and accommodate growth. 

2.3 ATCO Tasks Taxonomy 

As previously described, in the rest of the document the ATCO tasks will follow the CRIDA 
taxonomy used by the ATON tool. It should be clarified that the defined tasks do not fully cover 
all ATCO activities, but only those linked to actions with the controller position interface and 
tools, finally leading to an interaction with a given flight crew. So, for instance, general vigilance 
actions are not covered. ATON records events related to the execution of the action through the 
interface (or using voice commands, which are also analysed). 28 different types of tasks are 
being recorded. Table 1 describes each of the task types. 

Abbreviation Meaning 

CTE Radar Contact 

CTE31 Entry into the Shared Flow Flight Sector 

CS Flight Released/Cleared 

CTE32 Departure from the Shared Flow Flight Sector 
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Abbreviation Meaning 

Ac5 Instruction: Level Change by Procedure 

Ac6 Speed Adjustment by Procedure 

Ac7 Approach Authorization 

Ac8 Direct route to a point to shorten flight plan 

Ac9 Provide essential information 

Ac12 Changing  SSR Transponder Code  

Ac13 STAR Assignment 

S2 Vector for Separation or Sequence 

S3 Detours caused by storm areas 

S4 Final vector on approach 

X1 Standard or Procedural Vector 

A1 Level Change for Separation or Sequence 

A2 Speed Adjustment for Separation or Sequence 

A3 Direct to a point for separation or sequence 

A4 Standby Instruction 

A6 Separation via non-approval of requirement 

H1 Aircraft entry in circuit waiting over a certain point 

R1 Transition to arrival 

C1 Transition to flyover 

Coordinations 

CO2 Receipt of authorizations, permits or instructions generated by 
other sectors and their retransmission to aircraft 

CO5 Exchange of general information (equipment failure, general 
transfer conditions, etc.) 

Y1 Create Flight Plan 

Y2 Modify Flight Plan 



D3.1 - ATCO TASKS PREDICTION MODEL 
Edition 00.02.00 

	 	

	
 

Page | 16 
© –2024– SESAR 3 JU 

  
 

Abbreviation Meaning 

Y3 Coordinated Flight Level when it involves different FL than expected 
by the collateral sector 

Table 1: ATCO task types 

2.4 ATCO Tasks Prediction Requirements and Data Sources 

CRIDA provided a collection of historical datasets to research methods for ATCO task prediction 
by UPM. The datasets belong to two different years, 2018 and 2023, although the training was 
carried out using only the data from the year 2023. There have been relevant post-COVID 
changes in the sector's traffic and procedures, and it was not expected the data would be 
homogeneous enough to allow consistent results mixing different years. 

There are three datasets covering:  

• GIPV, related to flight plans. 
• FLOWS, related to track updates. 
• ATON, related to ATCO actions. 

The sector to be used for training and validating the models in this project is the so-called 
LECMDGU sector, whose description has been given using the coordinates that describe a 
polygon. In the following image, you can see the shape of the polygon in red and the trajectory 
in blue and purple made by an aircraft. It is an in-route sector, covering FLs from 345 to 660. 
Most flights go through it, as in its vertical there are only a few small aerodromes. In its vicinity, 
there are some much larger airports, such as Madrid or Bilbao.  
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Figure 3:  Interest Sector: LECMDGU 

CRIDA selected this sector, considering the large amount of ATCO tasks data (ATON recordings) 
available for training. 

Additional airspace information is available and may be used in our models. Specifically, based 
on historical data, the sector has a collection of associated “flows” or most prevalent traffic 
patterns. Both 2022 and 2023 flows descriptions are available. For our model training, we used 
the “past” flow (that of 2022) to train the models with “real-time” 2023 data. The reason is that 
it would not be possible to operate in real-time with flows that are calculated for the current 
year; the ATCO prediction system will always need to make use of relative past flow data. 

Details of the CRIDA datasets will be provided in the following subsections. 

2.4.1 GIPV (flight plans) 

This dataset represents the flight plans corresponding to each flight, including all updates made 
along the execution of this flight. Each flight plan is described by a set of waypoints planned to 
be flown over in order. Waypoints can be added, removed, or completely updated along time. 
The flight plans include future waypoints (with their expected times of overfly) and the collection 
of past waypoints (with actual times). Table 2 depicts the different information available for 
each waypoint in a flight plan. 

Value Description 

eventId Numerical value that represents, for each flight plan associated 
with an aircraft, which flight plan update it belongs to. The first 
time the flight plan is sent, the eventId is 1 and as updates are 
sent, the eventId becomes 2, 3, etc. 

dateFrom Date representing the initial time of the time window to which 
the flight plan update that is being observed belongs. 

dateTo Date representing the end time of the time window to which the 
flight plan update being observed pertains. 

processDateReference All values assigned as NaN 

Region String representing the region where the data is taken: in this case 
it is from Madrid FIR 

callsign String representing the aircraft identifier according to the type of 
aircraft it is in relation to the manufacturing company or aircraft 
type (IBK20C, TVF63HL etc.). A single aircraft can make several 
flights, so it is not a unique flight identifier, but rather an aircraft 
identifier. 

adep String representing the airport of origin of the flight. 

ades String representing the airport of destination of the flight. 
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Value Description 

flightPlanEventType String representing the type if event related to the flight plans. 

state String representing the type of state in relation to the flight. 

stateDescription String representing the description for the type of state in relation 
to the flight. 

waypointName String representing the identifier of the waypoint. 

waypointLatitude Float representing the latitude of the waypoint. 

waypointLongitude Float representing the longitude of the waypoint. 

level Float representing the level assigned to the flight when passing 
over a waypoint. 

calculatedCrossingLevel Numeric value with NaN for most waypoints.  

speed Float representing the speed assigned to the flight when passing 
over a waypoint. 

waypointOrder Number of the order in which the waypoint within the flight plan. 

waypointSubOrder Number of the sub-order in which the waypoint is to be passed 
within the flight plan order 

waypointFlightRulesCode - 

waypointRouteType String representing the type of waypoint according to its use 
within the sector and routes 

eto Estimated Time Over significant point. 

etoTypeCode - 

airCraftRegistration - 

aircraftType - 

wake Wake vortex: Classification of the type of generated wake vortex. 

etot Date representing the Estimated Take-Off Time 

eldt Date representing the Estimated Landing Time 

iobt Date representing the Initial Estimated Off-Block Time 

HFIR String representing the human factors impact rating. 

flightRulesCode String representing the establishment of flight regulations rules. 
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Value Description 

flightRulesDescription String representing the description of the codes for the flight 
Rules Code 

cruiseSpeed Float representing the cruising speed of the aircraft when flying 
over the described waypoint 

rfl - 

regulationCode String representing a regulation code. 

flightKey Number representing the identifier for the flight, this identifier is 
unique for each flight and relates the flight with the rest of the 
datasets. 

flightCode Number representing other kind of identifier. 

flowsFlightKey Number representing other kind of identifier. 

Table 2: GIPV dataset waypoint associated data 

The whole GIPV dataset is composed of these waypoints’ rows, which can be filtered out 
considering (flightKey, eventid) to obtain each individual flight plan update. The collection of 
waypoints will then be ordered along flight making use of the associated order and suborder 
fields. 

The database covers the whole year of interest. 

2.4.2 Flows (tracks) 

This dataset contains recordings of radar tracks, quite accurate estimates of real-time positions 
and kinematic information of flights. There are time-stamped track updates for each flight every 
5 seconds. The fields of this dataset are summarized in Table 3. 

Value Description 

flightKey Number representing the identifier for the flights only for the flows 
dataset. 

callsign Callsign of the flight 

adep String representing the airport of origin of the flight. 

ades String representing the airport of destination of the flight. 

aircraft - 

instant Timestamp representing the instant at which the information of 
the flight has been updated. 
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lat Float representing the latitude of the aircraft position  

Lng Float representing the longitude of the aircraft position  

modo_c Float representing the current Flight Level of the aircraft  

ac - 

vel_z Float representing the speed of the aircraft in the vertical axis 

gipvCanariasFlightKey Number representing the identifier for the flight inside the insular 
(Canary Islands) territory. 

gipvMadridFlightKey Number representing the identifier for the flight inside the 
peninsular territory, this identifier is unique for each flight and 
relates the flight with the rest of the datasets. 

Table 3: Flows track update associated data 

The complete database contains all track updates of all flights in the whole Spanish airspace, 
although the relevant data (that of flights going through the interest sector) has been filtered 
for their use in the models training. 

The database covers the whole year of interest. 

2.4.3 ATON (ATCO task) 

The ATON database contains recordings of these actions basically in the form of a table with a 
timestamp, the task type identifier, and a flight identifier. As previously described, they are 
related with interactions between aircraft and air traffic control officers (ATCOs), following 
CRIDA taxonomy summarized in Table 1. The complete format for each of the records is 
summarized in Table 4. 

Value Description 

Time Date representing the time instant at which the entry of the task is 
taken. 

Name String representing the name of the task performed 

State - 

callsign String representing the identifier of the aircraft, it corresponds to 
the same value as the callsign of the track (Flows) dataset 

sector String representing the name of the sector in which this 
intervention is carried out. In this case, the sector is always the 
same: LECMDGU, since it is the sector under study 

Table 4: ATON ATCO task record  
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In some cases, there is additional information recorded (i.e. related to conflicts), but this 
information has not been exploited by our models. 

The database does not cover the whole year of interest. Instead, there are recordings covering 
all the tasks in one-hour intervals. Typically, there is only one recording (1 hour) per day, and 
not for all days. A total of 319 one-hour recordings is available for 2023. 

 

2.4.3.1 ATON Data Analysis 
In this subsection an initial ATCO task database analysis will be performed. For this analysis 
flights fully traversing the sector in a recorded hour were used. Also, only flights under ATCO 
control at those time intervals are included here. 

There are a total of 12011 flights in this situation in the ATON recordings for 2023. In Figure 4 
you may see a histogram with the number of those flights that had an associated action of any 
given type. 

 

Figure 4:  Histogram of ATCO actions 

A set of observations can be extracted by inspecting this histogram: 

- Half of the types of tasks (14 out of 28) have no associated action/event recorded at all. 

- The total number of actions of the types CTE+CTE31, and the number of actions of type 
CS+CTE32 are equal to the number of flights (12011). In fact, most of the flights have 
actions CTE (initial contact) and CS (final contact), and only a few (259 in our recording) 
follow the alternative CTE31 and CTE32 pattern for start and end of the associated 
events recording. 
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- All other actions are much less prevalent. The following histogram shows one third of 
the ATCO actions are initial contacts, another third are final contacts/releases, and the 
remaining third encompasses all the rest of the interventions. 

 

 

Figure 5:  Percentage of ATCO actions per type 

The same data, with a different normalization, gives us the percentage of flights that have an 
intervention of any given kind.  

 

Figure 6:  Percentage of flights with associated ATCO actions 
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It can be seen in the results that, apart from the in-out events, the other most relevant tasks are 
those related to:  

- Procedural level changes (Ac5): more than one third of flights. 

- Direct routes (Ac8), almost 20% of flights. 

- Level changes (A1), Vectors (S2) for separation or sequence, just above 12% of flights. 
Directs (A3) for this same reason are nearly 6%. 

- Transitions to Flyover (C1), or arrival (R1) are around 7% and 4%, respectively. 

The rest of the actions are much less prevalent (in the order of 1%), and therefore much less 
predictable. 



D3.1 - ATCO TASKS PREDICTION MODEL 
Edition 00.02.00 

	 	

	
 

Page | 24 
© –2024– SESAR 3 JU 

  
 

3 First Iteration of CODA ATCO Task Prediction Model Design 

In the next section a first approach for the prediction of ATCO tasks is described. It tries to predict 
all the previously mentioned ATCO tasks for each individual flight. 

3.1 CODA ATCO Task Prediction Architecture (v1) 

The architecture designed for predicting ATCO tasks comprises four stages, represented in figure 
7: the first stage focuses on data ingestion and filtering, the second on label generation, the third 
on task prediction, and the last stage on task scheduling forecasting.  

 

Figure 7:  Prediction architecture 

The proposed architecture has four phases, to be described in detail in the following 
subsections. 

3.1.1 Ingestion and data filtering 

A filtering process is performed on the data to be used for each iteration. It should be noted that 
a sliding time window will be employed; therefore, temporal filtering of the data will be 
necessary for each moment this analysis is conducted. Additionally, only flights passing through 
the sector will be extracted from the dataset. 

3.1.1.1 Data Fusion 
During the ingestion and data filtering operations, a merge is performed between the raw 
datasets of tracks, flight plans, and ATCO tasks. Analysing the dataset after this merge, it can be 
observed that most flights do not have any associated tasks. Only 319 hours of tasks are 
available, while complete days of tracks and flight plans are available corresponding to those 
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319 hours. Most tracks and flight plans are associated to time intervals without ATON recordings 
and therefore need to be discarded for the training and validation of our model: for each hour 
with tasks, there are almost fifteen hours of track and flight plan data. The data fusion process 
discards the not relevant data, makes use of the flight keys and aligns the time formats. 

3.1.2 Labels generator 

The second stage of the system is referred to as the label generator. These labels will describe 
flight behavior by comparing flight plans and their tracks. Below is a brief description of each of 
these labels, which aim to classify the flights. The global aim of this step is synthetizing a 
collection of features to be able to learn a ML model to predict the occurrence of tasks. 

3.1.2.1 ATCO responsibility 
This label indicates whether the aircraft falls under the jurisdiction of the air traffic controller 
(ATCO). Two checks are conducted to determine this: firstly, to confirm if the aircraft is located 
within the designated sector, and secondly, to assess whether the ATCO has engaged with the 
aircraft in any manner thus far. Depending on both criteria, the label can take on the following 
values: INSIDE - UNDER RESPONSIBILITY, OUTSIDE – UNDER RESPONSIBILITY, INSIDE – NO 
CONTACT, or NO RESPONSIBILITY. Additionally, within this set of labels, the status of interaction 
transmission, denoted as CTE_SENT, is also included: True/False. 

To conduct these verifications, the following data sources are utilized: 

• The position designated by the latest trajectory transmitted by the aircraft, determining 
its sector presence. 

• The ATON dataset, logging interactions between the aircraft and the ATCO. 

3.1.2.2 Flight Plan (FP) non conformance 
This label will facilitate comparison between the current path being followed by the aircraft 
during the flight and the detailed planned route outlined in the flight plan. To achieve this, the 
following metrics will be analyzed (and compared with ad-hoc thresholds): 

- Lateral displacement: It will assess how much the current route deviates laterally from 
the planned trajectory. 

• Route delay: It will measure the time deviation of the aircraft from the anticipated 
position on the planned route. 

• Aircraft altitude deviation: A comparison will be made between the altitude of the 
aircraft and the specified altitude limits for the current position on the planned route. 
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Figure 8:  FP conformance classification 

3.1.2.3 Delayed flight 
This label will provide information on the flight delay in relation to the initial flight plan and the 
last flight plan updated before take-off. This will be achieved by comparing the expected arrival 
time at the next waypoint, as indicated in the flight plan, with the planned arrival times at that 
same waypoint both when creating the flight plan and just before take-off. Additionally, it will 
indicate if the flight is still on the ground with a marker. The label does not consider the reason 
for the delay (no consideration of network management and ATFCM is included here). 

3.1.2.4 Departure delay 
This label displays the departure delay of a flight by comparing the scheduled departure time in 
the initial flight plan created and the latest update of the flight plan, which presents the actual 
departure time (if the flight has already taken off) or the expected departure time if the flight 
has not yet started. 

3.1.2.5 Unexpected flight pattern 
This label will assess the presence of abnormal behaviors by comparing the current flight 
behavior with thresholds for maximum and minimum speed, as well as maximum and minimum 
altitudes. This evaluation will only be conducted for flights within the sector, excluding those 
that have not yet entered the sector or have already exited it. 

3.1.2.6 Aircraft in flow group 
This label will identify whether an aircraft belongs to a group of aircraft that are following a 
common route, close together on the same flight leg, on the previous leg or on the next leg. It 
calculates the distance between the aircraft and other aircraft on the same legs, as well as on 
the preceding and following legs. If it finds at least three aircraft close enough, it forms a group 
and provides information about the aircraft in the group. This function is useful for air traffic 
analysis and management, helping to identify groups of nearby aircraft for coordination and 
safety purposes. 
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3.1.2.7 Congested waypoints 
This tag allows to identify the congestion of waypoints in an air traffic sector during a specific 
time interval. In this way it is possible to know if an aircraft passes through waypoints that are 
congested. 

3.1.2.8 Detect belonging to high traffic flow 
This label will determine, both for flight plans and tracks, if the aircraft is following one of the 
high traffic flows described in section 2.4. This analysis will also check which of the waypoints 
that form part of the routes defined in the flight plans have been skipped or added within the 
predetermined sector routes. 

3.1.2.9 Congested airspace 
This label will serve as a marker for the level of airspace occupancy for the current moment and 
for future time windows. To achieve this, the airspace is divided into zones or cells as shown in 
the image. Then, the following data is collected: 

• The number of aircraft in each cell (grid) based on flight tracks. 
• The number of aircraft that should be in each cell according to flight plans.  
• The number of aircraft expected in each cell for each defined future time window 

according to flight plans. 

 

Figure 9:  Cells for congested airspace assessment 

 

3.1.3 Task Prediction Generator  

The core element of the system is the Task Prediction Generator. The schematic that best 
describes the task prediction generator is the one presented in Figure 10. 
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Figure 10:  Task prediction generator inputs and outputs schema 

ATCO task prediction generator is, therefore, a function which should relate the information of 
each individual flight and associated labels with the number of occurrences of each individual 
type of tasks for a short interval in the future. The inclusion of previous tasks for the flight as an 
input should ideally preclude the occurrence of tasks already performed, while the inclusion of 
previous tasks for all aircraft would somehow reflect the overall workload and the most typical 
task types being used by the controller in the current situation. 

To implement this function a collection of Machine Learning (ML) approaches to be discussed 
later have been used. All those ML approaches have been trained using CRIDA database, which 
has been processed using a sliding window approach to synthesize pairs input-output to enable 
the use of supervised training approaches. 

3.1.3.1 Task Prediction Dataset Generator 
To generate the data associated with each flight, it is necessary to extract the labels that describe 
the flight at the specific moment being analyzed. This will involve evaluating aircraft that are 
currently or were recently within the sector during the time window for which the labels are 
being extracted, as well as aircraft that, according to their flight plans, will be within the airspace 
during the subsequent moments. These time windows, along with the windows for which 
predictions are to be made, are represented in the following figure. 
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Figure 11:  Sliding windows for task prediction generator training 

Additionally, this iterative analysis will be performed for each of the time windows for which 
information about the air traffic controller's tasks is available in the dataset provided by CRIDA. 
These windows will be analyzed by shifting the times with an overlap with the previous window, 
as shown in the following image. 

 

Figure 12: Sliding windows for Task prediction generator training process 

After analyzing each flight and obtaining the values of the labels that represent the flight's 
behavior for the current interest instant, a dataset is generated to predict the number of tasks 
of each kind that will be performed, associated with a flight, at a specific interval in time. 

As a result of this process, a dataset is obtained that contains, for each flight and each time 
window, a set of input values, called the input vector, with all the real-time flight information 
(labels plus additional information), and another output vector that contains the number of 
times a task associated with the flight in question will be performed. The output vector will be 
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the target aimed for the prediction, and the function will be fitted following a supervised training 
approach. 

In our initial implementations of the task prediction generator, we aimed to train a predictor 
capable of providing the number of occurrences of each individual task type in the CRIDA 
taxonomy, which resulted in an extremely time-consuming training process with very bad 
results. 

To increase the number of occurrences of each type of tasks and try to improve the previous 
results it was decided that instead of treating each task type independently, a group of 
functionally similar tasks would be predicted. Thus, the task information has been grouped with 
the following structure: 

Tasks Group 

CTE + CTE31 Radar Contact 

CS + CE32 Flight Released 

Ac5 + Ac6 + Ac7 + Ac8 + Ac9 + Ac12 + Ac13 Procedures 

S2 + S3 + S4 Vector and weather deviations 

A1 + A2 + A3 + A4 + A6 Separation 

Co2 + Co5 + Y1 + Y2 + Y3 Coordination 

Table 5: Groups of ATON ATCO task types 

R1 (transition to arrival) and C1 (transition to flyover) were kept separate, as they appear as 
tasks in the dataset but are not so closely related to the other groups. 

3.1.3.2 CODA ATCO Task Prediction Inputs and outputs 
The task prediction inputs that are presented in Figure 10 contains all the information related 
to the state of the flight at the time of the analysis. In Table 6 we can find the inputs and the 
outputs used for training and their meaning. 

Input Meaning 

window_instant Instant identifying the window (current time) 

flightKey Unique flight identifier 

callsign Aircraft identifier 

actual_lat Aircraft latitude at the current time 

actual_lng Aircraft longitude at the current time 

actual_modo_c Aircraft mode C at the current time 
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Input Meaning 

actual_velocity Speed on the z-axis at the current time 

height_pattern Information about the height pattern based on the 
vertical movement of the aircraft. Label taken 
from unexpected flight pattern 

lateral_displacement Information about the lateral displacement of the 
aircraft with respect to the expected position 
according to the flight plan. Label taken from 
Flight plan non-conformal 

time_to_intersect_1 Time until entry into the sector (>0 if not entered, 
<0 if already entered) 

time_to_intersect_2 Time until exit from the sector (>0 if not exited, <0 
if already exited) 

initial_delay_time Delay respect to the first flight plan that was 
updated after the take off 

departure_delay_time Delay time with respect to the original flight plan 
(if there has been a departure delay) 

state_delay Delay status, taken from the label delayed flight 

time_delayed_time Delay time with respect to the flight plan 

in_contact Flight in contact with the ATCO 

inside Flight is within the sector in area (latitude and 
longitude) 

initial_contact_sent The initial contact task has been performed 

scheduled_flow_1 Which Flow from the flows file is being followed 
according to the flight plan 

added_wp_1 Have WPs been added to the flight plan compared 
to the Flow followed? 

skipped_wp_1 Have WPs been skipped in the flight plan 
compared to the Flow followed? 

followed_flow_1 Which Flow has been followed according to the 
tracks 

real_position_real_cell_congestion Number of aircraft in the cell where the flight is 
located 
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Input Meaning 

real_position_expected_cell_congestion Number of aircraft that should be in the cell where 
the flight is located 

expected_position_real_cell_congestion Number of aircraft that should be in the cell where 
the flight was expected to be 

actual_cell_lat Cell where the flight is located 

actual_cell_lng 

expected_cell_lat Cell where the flight was expected to be 

expected_cell_lng 

future_cell_lat_X Future cells where the aircraft is expected to be 
according to the flight plan 

future_cell_lng_X 

future_cell_congestion_X Congestion expected in future cells 

congested_wp_X Set of waypoints exceeding a threshold of the 
maximum number of aircraft near them 

total_congestion Total airspace congestion 

AAA_allplanes_done Number of times task AAA3 has been repeated for 
all aircraft within the airspace during the 
window_size time 

task_done_N Task number N performed for the flight under 
analysis 

time_for_task_done_N Time at which task number N was performed 

AAA_done Number of times task AAA4 associated with the 
flight under study has been performed 

Output Meaning 

 

3 Here, AAA is a placeholder for each type of task. So, AAA will be CTE, CS, Ac5, … and there would be up 
to 24 features of this kind. Also, when we group types of tasks, it will be the associated feature for all the 
associated task types. 

4 Again, AAA is a placeholder for each type of task. So, AAA will be CTE, CS, Ac5, … and there would be up 
to 24 features of this kind. Also, when we group types of tasks, it will be the associated feature for all the 
associated task types. 
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Input Meaning 

AAA_this_plane Number of times task AAA5 will be performed in 
the following minutes defined by the 
delta_t_future_task window 

Table 6: Data for generator training 

It should be noted some of the last data in Table 6 are basically vectors, as there are individual 
counters for each task type. Depending on the iteration, we have typical input vectors of 
dimensionality 80-130 and output vectors of dimensionality 8-28 (with or without task types 
grouping).  

3.1.4 Task Scheduling Forecasting 

In the last phase of the system, the models should, ideally, predict the time instants in which the 
ATCO will need to perform the predicted tasks. This system would receive as inputs the outputs 
of the Task Prediction Generator (the predicted tasks for each aircraft), together with the 
additional tags mentioned above. Based on these inputs, it would analyze the predicted tasks 
and predict the time interval in which the ATCO would perform each task.  

3.1.5 CODA ATCO Task Prediction Outputs 

Ideally, the CODA ATCO Task Prediction outputs include a list of tasks (events) per flight, and for 
each task, a probability associated to that task, a timestamp and a range of time. The prediction 
is done for each flight and for each time window. To simplify the problem, the outputs have 
been divided into two parts: task prediction (+probability) and time (+range). A first model 
predicts the task and a second one the time. 

The predictions of timing and time ranges were also affected by the poor performance of the 
task predictor, and the model currently assumes the window time and duration as the temporal 
reference for this part of the prediction output. 

3.1.6 CODA ATCO Task Prediction Intermediate Outputs 

The CODA ATCO Task Prediction model generates several intermediate outputs during its 
processing pipeline, which can be valuable for system monitoring, debugging, and further 
analysis. These intermediate outputs include the processed and filtered dataset resulting from 
the initial data ingestion stage, containing all the labels generated from the initial datasets. From 
this stage, it is possible to extract additional information such as tasks that never occur, labels 
that are identical throughout the dataset, or unexpected data types, which is useful for 
debugging the label generator. 

 

5 Again, AAA is a placeholder for each type of task. So, AAA will be CTE, CS, Ac5, … and there would be up 
to 24 features of this kind. Also, when we group types of tasks, it will be the associated feature for all the 
associated task types. 
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Another intermediate outputs are the intermediate feature importance scores, indicating which 
input variables have the most significant impact on task predictions. These scores have been 
used to refine the model. 
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3.2 CODA ATCO Task Prediction Generator Model Implementation (v1) 

The overall system design was implemented in Python, and a collection of ML models were 
trained to try to interpolate a function relating the described inputs and outputs, described in 
sections 3.1.3, and more in detail in section 3.1.3.2. 

To be able to have comparative results different approaches from the literature and with 
reference Python implementations were analysed for initial implementation. Their main 
features are summarized in next section, and they are later described. Later in the process, and 
after testing quite a few of the initially selected algorithms other approaches where tested. 
Those with better performance along the different iterations were kept for further refinement, 
and therefore this initial list is not completely aligned with the final ones.  

3.2.1 Initial Applicable ML models 

Table 7 lists the potentially applicable ML models and analyses them comparatively with regards 
to some attributes of interest for our application. 

The selected models, such as those based on regression, decision trees and neural networks, 
have been chosen trying to find a balance between accuracy, explainability and scalability. 

 



   

	

   

 

 
 

Input Entry type Computational 
cost 

Explainability Precision Scalability Interpretability Robustness at noisy 
data 

Linear 
regression 

Numerical Low High Medium High High Medium 

Logistic 
regression 

Numerical/ Categorical Medium Medium/High Medium Medium Medium/High Medium 

Decision trees Numerical/ Categorical High Medium/High High Medium/High High Medium 

Random Forest Numerical/ Categorical High Medium/High High Medium/High High Medium 

SVM Numerical High Medium High Medium/High Medium High 

Neural 
Networks 

Numerical/ Categorical Very High Low Very High High Medium Medium/High 

kNN Numerical/ Categorical Low Low High Low/Medium Low Low 

Naive Bayes Numerical/ Categorical Low High Medium High High High 

Transformers Numerical, Binary, 
Categorical, etc. 

Very High High Very High High High Very High 

LSTM Numerical, Binary, 
Categorical, etc. 

High High High High High High 

Table 7: ML approaches comparison  

 



   

	

   

 

 
Description of the algorithms. 

- Linear and logistic regression: These algorithms are widely used due to their low 
computational cost and high interpretability. Linear regression is suitable for continuous 
prediction problems, while logistic regression is effective in binary or multiple 
classification scenarios. While their accuracy may not be the highest compared to more 
complex models, their simplicity and interpretability make them valuable in situations 
where explainability is crucial for human operators. 

- Decision Trees and Random Forest: Decision trees are high-performance models that 
divide data into multiple branches, facilitating the prediction of events from categorical 
and numerical data. Their ability to be easily explainable makes them an effective tool 
in the prediction of air traffic control tasks. The Random Forest combines several 
decision trees to improve accuracy and robustness to noise in the data. These algorithms 
are suitable for high accuracy prediction, although at a higher computational cost. 

- Support Vector Machines (SVM): SVM is a powerful model for real-time task 
classification. Its accuracy and scalability are strong points; however, the model requires 
a high computational cost, which could be a limitation in real-time implementations in 
systems with limited resources. 

- Neural Networks and Transformers: Neural networks and transformers are notable for 
their ability to handle large volumes of data and detect complex patterns. These models 
are particularly useful in scenarios where high accuracy is sought, such as predicting 
multiple simultaneous air traffic control tasks. However, they require large amounts of 
data and considerable computational resources, which can make them difficult to use 
in real time in certain systems. 

- Naive Bayes and k-Nearest Neighbours (kNN): Naive Bayes and kNN are fast and efficient 
algorithms with low computational cost. However, although they are more suitable for 
real-time implementations due to their simplicity, their accuracy and ability to handle 
noise in data are often limited compared to more complex models. 

- LSTM (Long Short-Term Memory): LSTM neural networks are particularly useful for 
sequential and time-dependent data, which makes them suitable for prediction of time-
series based tasks such as tracks and flight paths. Although their performance is high, 
they also have limitations in terms of computational cost and the need for large volumes 
of historical data. 

Limitations of the algorithms. 

There are some important limitations of these approaches that must be considered. First, many 
of the more accurate algorithms, such as neural networks and transformers, require large 
amounts of historical data to adequately train the models. In scenarios where data is limited or 
incomplete, these algorithms may not perform optimally. In addition, algorithms such as SVM 
and Random Forest, although accurate, may present real-time scalability problems due to their 
high computational cost. Finally, simpler models, such as Naive Bayes and kNN, while lightweight 
and fast, can suffer in situations with high levels of noise or complexity in the data, resulting in 
less accurate predictions. These factors underscore the importance of carefully selecting the 
appropriate algorithm. 
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3.2.2 Datasets for CODA ATCO Task Prediction ML models training 

The datasets used for the training includes all the features described in section 3.1.5, so it 
directly or indirectly includes all the information coming from radar tracks, flight plans and ATCO 
tasks. The models have been trained using 2 datasets: the first one generated with a time 
window of 20 minutes and the second one with a time window of 10 minutes. The datasets have 
been divided into 85% for training and 15% for validation for all the training session to guarantee 
homogeneous result and making possible a comparison of the models. 

3.2.3 Training process of CODA ATCO Task Prediction ML models 

Various algorithms were evaluated in the training process, with those less suited to the specific 
requirements of our case, such as linear regression, logistic regression, KNN, and SVM, being 
discarded in the early stages. The focus then shifted to more promising algorithms, including 
decision trees, random forests, XGBoost, LSTM, and transformer models. For each of these, an 
extensive hyperparameter tuning process was conducted to optimize their performance and 
achieve the best possible results. Different modelling approaches were also explored, including 
the creation of a single multi-output model, as well as experimenting with multiple single-output 
models to assess whether specialized models could provide better accuracy or generalization. 
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3.3 CODA ATCO Task Prediction Model Validation (v1) 

3.3.1 Datasets for CODA ATCO Task Prediction Model validation 

The datasets used for validating the CODA ATCO Task Prediction Model are the same as those 
described in section 3.2.2 for training. For the validation 15% of the datasets have been reserved 
as unseen data. An early stop callback has been used to prevent overfitting and to accelerate 
the training of all the models created. 

3.3.2 Validation results of CODA ATCO Task Prediction Model 

The validation dataset has been used to evaluate the model's performance across various 
metrics such as total accuracy, probability of generating a task when the task occurred in the 
dataset, and the rate of false alarms. It should be reminded a value 0 in a certain component of 
the prediction vector means no task of this type is performed/predicted, while a value different 
than zero means there has been a real or predicted task of this kind. 

The metrics are defined and calculated in the following manner: 

- Accuracy: % of times the model correctly predicts the value of the output vector 
(number of predicted tasks is equal to number of actual tasks). 

 

- Probability of correct task prediction: % of times that the model correctly predicts that 
the value in the output vector is different from zero (number of predicted tasks and 
number of actual tasks are greater than zero, so the system can predict an actual task).  

 

- Probability of false task prediction: % of times the model predicts that there is going to 
be a task when in fact there is no task.  

 

During the training of these initial multi-output models, several algorithms were discarded due 
to poor performance, which stemmed from their unsuitability for the type of problem at hand. 
The poor results in predicting tasks when they occurred (just over 0% accuracy in the cases of 
R1, C1, and RC) led to the decision to split the multi-output model into several single-output 
models. To further improve accuracy, although our initial prediction window was of 20 minutes, 
we obtained better results by reducing it to 10 minutes. The results are reported in tables Table 
8, Table 9, Table 10 and Table 11 , which contain the final list of algorithms being tested. 

 



   

	

   

 

  Decision Tree Random Forest XGBoost LSTM Transformer 

CTE 

Accuracy 86.1% 90% 93.3% 92.8% 37.1% 

Probability of correct task prediction 59.8% 60.1% 72.3% 79.8% 45.6% 

Probability of false task prediction 4.9% 5.5% 2.3% 3.2% 53.4% 

CTE31 

Accuracy 99.2% 99.4% 99.6% 99.8% 78.9% 

Probability of correct task prediction 56.8% 34.6% 52.5% 83.1% 13.6% 

Probability of false task prediction 0.03% 0.1% 0.05% 0.05% 20.5% 

CS 

Accuracy 91.9% 93.5% 96% 92.7% 71.7% 

Probability of correct task prediction 85.8% 76% 87.9% 81.7% 8.4% 

Probability of false task prediction 1.1% 3.4% 2.8% 2.5% 8.6% 

CTE32 

Accuracy 92.7% 99.4% 99.7% 99.8% 69.5% 

Probability of correct task prediction 2.3% 40.2% 65.1% 87.7% 22.3% 

Probability of false task prediction 6.7% 1.5% 0.04% 0.09% 29.8% 

Table 8: ATCO Contact and Release Tasks Prediction with different ML approaches. 
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  Decision Tree Random Forest XGBoost LSTM Transformer 

Ac5 

Accuracy 96.4% 97.1% 98.1% 98.5% 95.5% 

Probability of correct task prediction 39.7% 35.9% 56.5% 76.2% 10% 

Probability of false task prediction 0.6% 0.9% 0.6% 0.6% 0.9% 

Ac8 

Accuracy 97.3% 97.726% 98.4% 98.8% 38.4% 

Probability of correct task prediction 33.3% 26% 44.5% 70.01% 58% 

Probability of false task prediction 0.06% 0.5% 0.2% 0.4% 60% 

Ac12 

Accuracy 100% 100% 100% 100% 78.4% 

Probability of correct task prediction 0% 100% 100% 100% 1% 

Probability of false task prediction 100% 0% 0% 0% 22% 

Ac13 

Accuracy 99.9% 99.9% 99.9% 99.9% 83.6% 

Probability of correct task prediction 12.4% 50% 72.2% 50% 11.4% 

Probability of false task prediction 0.01% 0.2% 0.02% 0.01% 16.3% 

Table 9: ATCO Procedure Task Prediction with different ML approaches. 
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  Decision Tree Random Forest XGBoost LSTM Transformer 

A1 

Accuracy 99.1% 98.5% 99.1% 99.2% 62.2% 

Probability of correct task prediction 48.9% 25.4% 48.9% 70.8% 20.1% 

Probability of false task prediction 0.03% 0.5% 0.03% 0.2% 26.1% 

A2 

Accuracy 99.8% 99.8% 99.8% 99.9% 73.7% 

Probability of correct task prediction 32.6% 18.6% 32.6% 45.8% 23.6% 

Probability of false task prediction 0.03% 0.3% 0.03% 0.01% 26.1% 

A3 

Accuracy 99.3% 98.9% 99.3% 99.5% 81.2% 

Probability of correct task prediction 46% 21% 46% 74% 17.1% 

Probability of false task prediction 0.01% 0.3% 0.01% 0.01% 17.9% 

Table 10: ATCO Separation Task Prediction with different ML approaches. 
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  Decision Tree Random Forest XGBoost LSTM Transformer 

R1 

Accuracy 99.4% 99.4% 99.5% 99.8% 51.5% 

Probability of correct task prediction 61.8% 19.1% 36.8% 72.8% 58.2% 

Probability of false task prediction 0.01% 0.05% 0.03% 0.09% 48.2% 

C1 

Accuracy 98.8% 98.3% 98.9% 99.1% 68.2% 

Probability of correct task prediction 52.3% 39.3% 56.1% 75.5% 24.9% 

Probability of false task prediction 0.2% 0.04% 0.02% 0.3% 30% 

Table 11: Rest of ATCO Task Prediction with different ML approaches. 

 



   

	

   

 

It can be observed in the results table that, even though none of the tested models offers strong 
enough metrics to be considered as a reliable predictor, there are interesting observations to 
consider. First, the group of tasks with better results are the contact and release tasks, which 
are not only the most common ones, but also the easiest to explain in a deterministic way. In 
fact, they are some of the lowest priority tasks. When it comes to predicting less common and 
more complex tasks, such as procedure and separation tasks, the performance metrics drop 
quite significantly. In the case of LSTM, decent results are depicted, reaching values in the range 
from 70%-80% for difficult tasks to predict such as Ac5, Ac8, A1 ..., with false alarms ratio under 
1%. 
 
The overall scores do not provide a result good enough to be used in a final system, but LSTM 
sheds light on the matter with a somehow promising result which leads to the idea that it could 
be feasible to develop in the future a model strong enough to be put in the real system. 
However, this method (LSTM), as with most deep learning algorithms, has a limited 
explainability. 
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4 Discussion on the limitations of the first iteration of the 
CODA ATCO Task Prediction Model Design 

The initial iteration of the CODA ATCO Task Prediction Model has revealed several limitations 
and areas for improvement. 

Firstly, while the overall accuracy of the model exceeds 97-98%, this high value is somewhat 
misleading. Most of the flight's passing through the sector do not generate any tasks, effectively 
transforming the problem into one of anomaly detection rather than task prediction. This 
characteristic of the data inflates the accuracy metric, as the model performs well in predicting 
the more common "no task" state. Other performance metrics present a more realistic picture 
of the model's capabilities. Only the Radar Contact (RC) and Flight Released (FR) task groups 
(which are almost “deterministic”) achieve probability scores close to 90% when a task occurs, 
and they have a low false alarm rate. The performance metrics for other task are considerably 
lower, indicating room for improvement in predicting less predictable tasks. The only method 
that depicts somehow decent scores is the previously mentioned LSTM. 

A significant limitation of the current models is the size of the available dataset. It includes 
almost one year of tracks and flight plans actualization, but it is limited to only 319 flight hours. 
The dataset is relatively small for a complex prediction task. This limited data volume may affect 
the model's ability to learn and generalize across a wide range of scenarios. 

An alternative approach would be using a more complex environment (such as a complex TMA) 
leading to a higher number of interventions. Large ATCO tasks recordings were not available 
currently for such scenario, but this is a potential area for future research. 

Another identified issue is the potentially excessive number of labels generated for each data 
point (flight + time). The current approach produces 110 total fields as input, which presents 
challenges for the models in terms of feature handling and interpretation. This high 
dimensionality may lead to overfitting on the training data and poor generalization to new 
scenarios. 

Finally, the relation between the extracted features and the task predicted is not too clear, and 
using the same features for all the task types could lead to unnecessary noise in the inputs. Also, 
the joint prediction of all task types might lead to find local optima where the ML algorithm find 
trade-offs between different dimensions and struggles to find a common approach. Also, 
completing the data with other contextual information (weather, airports configuration, etc …) 
might be interesting, although it may lead to even higher input dimensionality. 

An additional limitation of this approach is related to those interventions used for 
separation/sequencing/conflict resolution. Although the event leading to this intervention may 
have a relationship with more than one flight, the issue is quite often solved by issuing only one 
action allocated to one flight. There is not enough information in the recorded data to predict 
the action allocation from the ATCO, as the complete rules/procedures/preferences are not 
available. Also, there is no weather data, the configuration of the nearby sectors and airports is 
not available, and other contextual data which may have an impact on ATCO operations is not 
available. 
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These limitations provide some directions for future iterations of the CODA ATCO Task 
Prediction Model. Firstly, it is essential to identify which labels are relevant for each task type. 
This approach will enable the training of distinct models for individual tasks, using only the labels 
that effectively impact the prediction outcome for that specific task. Consequently, this method 
prevents other irrelevant labels from influencing the result. To achieve this objective, a more in-
depth analysis of the available data and the relationships between them will be necessary. It will 
probably necessitate a revision of certain label generators to modify their logic. The possibility 
of expanding the dataset beyond 319 hours would also present an ideal condition, providing 
more data to work with. This expansion would potentially enhance the robustness and accuracy 
of the models developed for each task. 
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5 Second Iteration of CODA ATCO Task Prediction Model 
Design 

Following the insights gained from the initial iteration of the CODA ATCO Task Prediction Model, 
a second iteration has been proposed to address the identified limitations and enhance the 
model's predictive capabilities. This iteration focuses on refining the approach to task prediction, 
aiming for more granular prediction architecture, tailored for individual different task or task 
types. By moving beyond the anomaly detection tendencies of the first iteration, the second 
iteration seeks to improve task-specific predictions, offering a more detailed and nuanced model 
that better captures the diversity of tasks an air traffic controller may assign to a given flight. 
This refined design will help ensure that the model is not only highly accurate but also better 
aligned with real-world task distribution and operational needs. 

A key feature of this version will be to soften the requirement to predict atomic or grouped 
ATCO tasks, changing it by the estimation of the probability of occurrence of each specific task, 
tailored to each flight. By leveraging the characteristics associated with each task and flight, the 
model will provide predictions on how likely it is that a given task will occur in the next few 
minutes. The associated cost will be not having so accurate timestamping of the predicted tasks 
and not providing hard decisions on the appearance of these task. This would result in 
implications on the compatible adaptive automation strategies, but it should be clear that 
following the first approach we could be providing very erratic ATCO task predictions with very 
noisy timestamps, which would result in a CODA system not reliable and not acceptable by 
ATCOs. 

If we assume all flights entering the sector have equal probability to “generate” each type of 
action, for any given flight with no additional data, we could predict, based on 2023 data, that it 
will have the following associated “default” probability vector (note this is just the information 
in Figure 5, put in vector form). Probabilities are provided as % in the vector. 

Component CTE CS Ac5 Ac8 A1 S2 C1 A3 R1 CTE31 CTE32 A2 Ac13 

Percentage 97 97 13 11 5 2 8 5 3 3 3 1 1 

Table 12: ATCO Task Prediction probabilities: default 2023 values 

Each component of this vector contains the average probability that a given flight demands this 
type of intervention from the ATCO, which is also equal to the average number of actions of this 
type per flight (assuming this is a Bernouilli distribution), calculated based on the overall traffic.  

An initial key idea in this new approach is predicting a ATCO task probability vector based on ad-
hoc features, different from the default one presented before (which can be assumed to be an 
averaged value for all flights). And a second key idea is splitting the vector-oriented predictor in 
a collection of smaller dimensionality predictors, one per action type. Each of these predictors 
would have more tailored small dimensionality feature set. 

This approach has some additional advantages over the previous one: 

- It deals much more nicely with those types of tasks with a lower occurrence rate. 
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- It enables an incremental implementation, where those types of actions where a 
potential prediction function is identified may use this function, and if there is not 
enough data or the function is found default probabilities may be provided as outputs. 

- As it is dealing with average probability values, it is more robust against some of the 
fundamental problems of the previous approach, as the allocation of actions related to 
several flights, or the lack of contextual information. For instance, a conflict resolution 
could lead to an increased probability of action for both flights involved, instead of 
assigning the action to either of them. 

- Ad-hoc predictors contribute to reduce the dimensionality by using a set of a few 
specific indicators that are found relevant for each task. This not only lighten the models 
but also enhances the explainability of its behaviour. 

 

 Approach version 

Keys V1 V2 

Output Binary classification and 
timestamp for each type of task 

Estimated Probability for each task or 
group of tasks 

Number of 
models 1 Individual model for each task or 

group of tasks 

Dimensionality Large number of shared 
features 

Reduced number of features for each 
task 

Explainability Low High 

Table 13: Approaches comparison 

 

At the same time, the approach has one fundamental problem: By not issuing a list of individual 
tasks for each flight, it is not compatible with automation adaptation strategies demanding this 
list.  

In any case it is compatible with automation strategies where all tasks of a given type are 
managed by the digital assistant or with others where individual flights are fully controlled by 
the digital assistant. In both cases it may enable the calculation of an average number of tasks 
of each kind being managed by the ATCO and the digital assistant, which may be safely used for 
the prediction of the ATCO workload and the real time management of digital assistant 
necessary computational resources. It should be noted those average probability numbers may 
be added for all flights to calculate the average number of actions for each type of task. 

5.1 CODA ATCO Task Prediction Architecture (v2) 
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The initial part of the architecture remains the same. It will filter and pre-process the data to 
generate a set of labels/features that represent additional information extracted from the 
dataset. Each label generator will be analysed to understand whether its output is useful for 
some prediction and/or if it needs some change. The idea will be to have very reduced 
dimensionality inputs (i.e. dimension < 5), so that we capture the major dependencies, and we 
are able to train simple and explainable model. 

In the final phase of the model, instead of using a single predictor for all tasks, specific predictors 
will be implemented for each task or type of task (trained/derived using a different collection of 
features). Based on those features, each of the system predictors will be able to estimate the 
probability of occurrence of the associated task type for a given aircraft within the next few 
minutes.  

 

Figure 13: V2 Architecture approach 

5.1.1 Ingestion and data filtering 

The second iteration of the CODA ATCO Task Prediction Model largely retains the data ingestion 
and filtering processes established in the first iteration. Given that the dataset remains the same, 
the spatial and temporal filters applied in the initial version continue to be relevant. 

In this iteration, a more stringent filtering process has been applied, incorporating both 
previously implemented functions and new methods. The goal of this enhanced filtering is to 
focus exclusively on flights that meet specific time and zone constraints within the sector and 
provide consistent ATCO task information. After completing this filtering process, the resulting 
number of tasks is presented in Figure 14. 
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Figure 14: Number of tasks after filtering. 

 

5.1.2 Task Probability Prediction approach 

Instead of relying on a single predictor for all task types, separated predictors will be designed 
for each type of tasks. The prediction process begins with the identification of relevant features 
for each task type. These features may include flight characteristics from the raw dataset (e.g., 
altitude, speed, trajectory, etc. from tracks and flight plans), or a subset of the labels generated 
by the label generators in a similar manner to the first iteration. A more accurate data analysis 
permits to determine which labels are more relevant to predict a specific task. Only the labels 
with demonstrated predictive value will be passed to a specific task model, which will be 
designed iteratively by incorporating new inputs/dependencies. This new approach can be 
viewed as the use of a different dataset to train each task prediction model. Since it is not known 
which algorithms are the best, it is possible that some machine learning models initially 
discarded during the first iteration may now be considered as viable options (e.g. SVM, logistic 
regression, multilayer perceptron, etc.). Another potential approach would be to define a 
distance logic between flights (using a feature vector) and interpolate a local probability of 
occurrence of the action type in the vicinity of the flight under analysis. 

A potential example of this approach would be the estimation of the probability of having a CTE 
task in the next minutes. Two features might be used in an initial implementation: 
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- Time needed to pass through the sector: in some cases, for flights which very rapidly 
overfly the sector, no responsibility change is performed. So, it may be expected that a 
dependency with this feature arises. 

- Time to arrive to the sector: depending on the time left, and its relationship with the 
prediction time horizon, the probability to have such action will change.  

In fact, in this case it is even possible both dependencies are roughly independent. So, a model 
based on data might help interpolate a function to estimate the probability based on these two 
inputs. 

A similar approach might be used for CS. In fact, both estimators will share part of its 
implementation (given the one-to-one relation between CTE and CS). In this case the features 
might be the time needed to pass through the sector and the time to leave the sector. 

Other examples of ad-hoc features related to probabilities would be those related to flight levels 
(in the tracks, entry points, exit points, intermediate waypoints) and related elaborations 
(vertical speeds) and their potential relations with changes in the probabilities of issuing altitude 
related orders. 

5.2 CODA ATCO Task Prediction Model Implementation (v2) 

This new approach requires dedicating effort to address each task individually, prioritizing 
tasks based on logical criteria. To optimize implementation, tasks will be ordered and 
scoped by their significance in the dataset. Specifically, tasks that occur most frequently 
in the data are given precedence, as they are not only better represented but also easier to 
predict due to the larger amount of available training data. Conversely, tasks that occur 
infrequently will be addressed later since their residual nature in the dataset makes them 
more challenging to model accurately. Based on this reasoning, the prioritized order of 
tasks for implementation can be seen in Table 14. 

The defined scope is to cover as much tasks as possible, however due to time and data 
constraints, those tasks with a representation under of 10% will not be considered yet. 

Order 1 2 3 4 5 6 7 8 9 10 11 

Task CTE CS Ac5 Ac8 A1, A2, 
A3, S2 C1 R1 CTE31 CTE32 AC13 AC12 

Table 14: Task distribution. 

Considering this, the model associated to each task or group of tasks analysed is described more 
in detail in this section. 
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5.2.1 CTE (Radar contact) 

5.2.1.1 Feature selection 
Based on this new approach, the first task to analyse, would be CTE, which represents the radar 
contact between the ATCO and the flight crew. For this task, a statistical approach is an 
interesting option rather than a classical classification machine learning predictor. The intention 
is to provide a probability of being contacted giving a certain time and within the next 5 minutes 
(the 5 minutes time horizon is a decision based on the typical times over the sector and could 
be changed). To estimate this probability function we will use the following information: 

• Time to intersect the sector: The contact between an ATCO and the flight crew will be 
produced in a time range, usually before it enters the sector. This time is computed with 
the latest available updated flight plan and the 3D intersection point to the sector. With 
this feature a distribution can be computed that allows to check if the hypothesis is 
represented by the data, by calculating this time in the instant the CTE is performed. As 
it can be seen in Figure 15, and as expected, the greater number of contacts given this 
sample data (which represents a portion of the total) agglutinates in the range of 0 to 5 
minutes to enter the sector. This feature not only represents a meaningful predictor for 
this task but also gives a time perspective that allows to introduce it to the prediction 
(probability within the next n minutes). 

 

Figure 15: Distribution of time to intersect in CTE. 
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• Time inside the sector: Following the same line of reasoning used for the time to 
intersect, the total time inside the sector of the flight is calculated. The idea of the 
potential of this feature is to penalize those cases where the flight tracks through a 
corner of the sector, and there is no actual change of responsibility associated, as can 
be seen in the example in Figure 16. In other words, sector skipping is much more 
probable for those flights with reduced time inside the sector. 

 

Figure 16: Example of borderline intersection between a flight and the under-study sector. 

The time spent within the sector is calculated for each aircraft that intersects the sector. 
Using this distribution, the probability of a CTE for each time range is determined by 
dividing the number of CTE cases within that time range by the total number of flights 
in the corresponding bin. Figure 17 illustrates the overall histogram of feature variable, 
and the associated probabilities of having a CTE conditioned to each time interval bin. 
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Figure 17: Distribution of time inside the sector feature. 

• Contact state: This would represent whether the flight has already been contacted or 
not, it is considered that if the flight was already contacted in the past, it has extremely 
low (0 probability) chances of being contacted again. This feature would be used to drop 
the probability once the CTE has been produced. 

5.2.1.2 Probability estimation 
Considering this set of features, the following probabilities are computed to get the desired 
estimator. 

• P (time to intersect t, t+5 | CTE) Probability of CTE in time t: assuming that there is CTE, 
this probability is computed using the distribution of Figure 15. For this, the current time 
bin and the ones corresponding to the next five minutes are accumulated. Since this 
probability is considering that there is going to be CTE, the remaining probability to the 
moment t is normalized as is considered to accumulate the prior probability that has not 
occurred. 

• P (CTE | total time) Probability of CTE for given total time: in this case, the probability 
for the corresponding bin is computed. When has already entered the sector, meaning 
time to intersect < 0, this probability will be calculated with the remaining time (time to 
intersect + total time inside). This is performed with the intention of dropping the 
probability as the flight gets closer to leaving the sector. 

The output of the CTE probability estimator, having the inputs [time to intersect, total time 
inside, contacted], would be:  

• If time to intersect >= 0 and not contacted,   

P (CTE t, t+5  ) = P (time to intersect t, t+5  | CTE) * P (CTE | total time) 
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• If time to intersect < 0 and not contacted,   

P (CTE t, t+5  ) = P (time to intersectt-5, t  | CTE) *  

P (CTE | (total time + time to intersect)) 

• If contacted or (total time + time to intersect) < 0,   

P (CTE t, t+5  ) = 0 

5.2.2 CS (Contact Release) 

5.2.2.1 Feature selection 
Once the CTE model has been established, the next logical step is to estimate the probability of 
the complementary task, CS. As with the other tasks, there is a direct correlation between the 
occurrence of CS and CTE, given that every aircraft contacted through the CTE task must 
subsequently be released via the CS task (this has been validated by our training data). 

Therefore, the probability of the CS task is inherently conditioned on the probability of the CTE 
task. To enhance this analysis and provide a more precise determination of the timing for the CS 
task, the following features are expected to be particularly informative: 

• Time to Leave: It is hypothesized that the expected time remaining until an aircraft exits 
the sector serves as a strong indicator of the probability of the CS task occurring within 
the next few minutes. Like the analysis of time to intersect in 52 for the CTE task, time 
to leave the sector is utilized here as a predictive feature for CS. This metric provides a 
temporal framework to anticipate when the task is most likely to be executed. 

• Contact state: This would represent whether the flight has already been contacted or 
not, it is considered that if the flight was already contacted in the past, it has extremely 
high (100% probability) chances of being released.  

• Released state: Once a CS task occurs, the probability of subsequent CS tasks (CS 
included) for the same flight immediately drops to zero, as the aircraft has already been 
handed over and is no longer under the ATCO's control. 



D3.1 - ATCO TASKS PREDICTION MODEL 
Edition 00.02.00 

	 	

	
 

Page | 56 
© –2024– SESAR 3 JU 

  
 

 

Figure 18: Distribution of time to leave for CS. 

5.2.2.2 Probability estimation 
As previously stated in the former section, the probability terms for CS estimation are: 

• P (time to leave t, t+5 | CS) Probability of CTE in time t: assuming the occurrence of CTE, 
and therefore CS, the probability for the CS task is computed using the distribution of 
the time to leave feature, conditioned on the CS event. To estimate this, the current 
time bin, along with the bins corresponding to the next five minutes, are accumulated. 
Since this probability calculation assumes the occurrence of CS, the remaining 
probability at time t is normalized. This normalization process accounts for the prior 
probability that has not yet occurred, ensuring that the model accurately reflects the 
likelihood of the CS task within the given time frame. 

• P (CTE t, t+5 ): extracted from the CTE estimator output. Even when the crew has not been 
yet contacted, we may predict the occurrence of a release, especially in those cases 
where the flight is expected to be contacted with high probability in the next minutes. 
Once contacted, this feature should not be used anymore for the output. 

Considering this, the output of the CS probability estimator would be: 

• If not contacted: 

P (CS t, t+5  ) = P (time to leave t, t+5   | CS) * P (CTEt-5, t) 
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• If contacted: 

P (CS t, t+5  ) = P (time to leave t, t+5   | CS) 

• If released: 

P (CS t, t+5  ) = 0 

 

Figure 19: Estimator structure diagram. 

5.2.3 Ac5 (Procedural level change) 

5.2.3.1 Feature selection 
Task AC5 is related to procedural level adjustments. The difference in flight level between the 
sector entry and exit points, is a critical parameter for predicting the execution of this type of 
task. This parameter effectively encapsulates the level adjustments implemented within the 
sector. To develop an estimator capable of providing the probability function for this task, the 
following information is considered: 

• Flight Level difference at the sector entry and exit: This metric quantifies the change in 
flight level experienced by an aircraft during its transit through a sector. By comparing 
the flight level at the point of sector entry to the flight level at the point of sector exit, 
it becomes possible to determine whether a significant altitude adjustment has 
occurred. This parameter is instrumental in identifying the execution of task AC5, as it 
facilitates the detection of specific altitude adjustment patterns relative to the aircraft's 
position within the sector. 

Performed observations indicate that instances where the flight level difference 
between sector entry and exit is zero are typically not associated with task AC5. This 
finding underscores the predictive importance of the flight level difference. Figure 20 
further supports this conclusion, illustrating the distribution of flight level differences 
and their relationship to the occurrence of task AC5. 
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Figure 20: Comparison between flight level difference with Ac5 and without Ac5. 

• Time-to-Leave: The time-to-leave value, calculated also for task AC5 execution, is used 
to model the probability distribution of task occurrence over the duration of an aircraft’s 
presence within the sector. The remaining time until sector exit is hypothesized to be a 
strong indicator of the likelihood of task AC5 occurring within the subsequent minutes. 

Analogous to the "time-to-intersect" variable discussed in Section 1, the time-to-leave 
parameter provides valuable insight into the temporal patterns of flight level 
adjustments. Intuitively, larger flight level adjustments are expected shortly after an 
aircraft enters a sector, allowing sufficient time for the adjustment to stabilize before 
exit. Conversely, smaller adjustments are anticipated closer to the sector exit, where 
opportunities for significant changes are constrained by time. 

This correlation between the remaining time in the sector and flight level adjustment 
patterns is leveraged as a predictive feature for estimating the probability of task AC5 
occurrence. Figure 21 illustrates the computed distribution of the time-to-leave value 
and its relationship with altitude change events. 
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Figure 21: Time to leave distribution for Ac5. 

• Contact state: This would represent if the flight has been contacted by an ATCO, if the 
aircraft has not been contacted the probability of having an Ac5 within the next few 
minutes depends on the probability of being contacted first.  

• Released state: Once a CS task occurs, the probability of subsequent CS tasks, like Ac5, 
for the same flight immediately drops to zero, as the aircraft has already been handed 
over and is no longer under the ATCO's control. 

5.2.3.2 Probability estimation 
Considering this set of features, for the estimator building the following probabilities are 
computed to get the desired output of the system. 

• P (Ac5 | CTE ∩ FL difference) Probability of AC5 for a certain FL difference h 
conditioned to CTE: the probability extracted from the distribution of FL differences in 
AC5 conditioned to CTE. This probability is given by the values shown in Figure 22. 
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Figure 22: Probability function for flight level difference in Ac5. 

• P (CTE t, t+5): extracted from the output of CTE estimator. 
• P (time to leave t, t+5  | Ac5): assuming that there is CTE, this probability is computed 

using the distribution of the time to leave feature conditioned to the AC5 event. For this, 
the current time correspondent bin and the ones corresponding to the next five minutes 
are accumulated. Since this probability is considering that there is going to be AC5, the 
remaining probability to the moment t is normalized as is considered to accumulate the 
prior probability that has not occurred. 

Therefore, the output of the system, for precise time t and a FL difference h, would be: 

If time to leave >= 0 and not contacted: 

P (Ac5 t, t+5  ) = P (Ac5 | CTE ∩ FL difference) * P (CTE t, t+5 )  

* P (time to leave t, t+5  | Ac5) 

If time to leave >=0 and contacted:  

P (Ac5 t, t+5  ) = P (Ac5 | CTE ∩ FL difference) *  P (time to leave t, t+5  | Ac5) 

If time to leave < 0 or released: 

P (Ac5 t, t+5  ) = 0 
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5.2.4  Ac8 (Direct route to a point) 

5.2.4.1 Feature selection 
The AC8 task involves the shortening of a flight's planned route by the ATCO using direct routes 
between waypoints. Analysing the possible causes behind this type of task involves considering 
several factors. A key aspect is identifying the objective the ATCO aims to achieve by 
implementing such measures. 

It is reasonable to understand this task as an optimization strategy, typically undertaken when 
air traffic density is low, allowing the ATCO to allocate time to improve flight efficiency by 
reducing time and fuel consumption. The motivations for this task depend less on the specific 
characteristics of the flight itself and more significantly influenced by the broader air traffic 
context, particularly when compared to the other tasks reviewed. Considering this, the analysis 
focuses on the congestion level within the sector under study. 

Based on this focus, the features computed for trying to predict the AC8 tasks are the following: 

• Number of in contact flights inside the sector: To estimate the probability of occurrence 
for this event, the number of contacted flights within the sector under study is 
computed. This is achieved by dividing each day, based on the available flight data, into 
time windows of X minutes. Within each time window, the number of flights present in 
the sector, as well as the number of CTE and AC8 tasks, are recorded. By aggregating 
this data, it becomes possible to analyse whether there is a correlation between the 
number of flights or contacted flights and the number of AC8 tasks. This approach 
enables the identification of patterns and relationships that may help predict the 
likelihood of AC8 tasks based on the volume of flights and the occurrence of CTE tasks 
within specific time intervals. Several window times were tested (6,12,30 mins) however 
none of them seem to provide strong enough evidence to affect this predictor. The 
number of windows with Ac8 tasks increased as the congestion increases, however, 
when it comes to the probability for a specific flight, remains almost constant.  
 

• Progression till next waypoint: Once the probability of AC8 is determined, based on the 
number of contacted flights within the sector, an additional feature is required to 
distribute this probability over the specific moment when the flights pass through the 
sector. Considering this, progression to the next waypoint is considered a relevant 
indicator. It is logical to assume that the order to perform AC8 would be issued with 
sufficient reaction time to bypass the next waypoint. Progression is defined as the ratio 
of the time elapsed since the previous waypoint to the total time between the current 
waypoint and the next. For example, if the time distance between two waypoints is 100 
seconds, a progression value of 0.5 would indicate that the aircraft has completed the 
first 50 seconds of the journey, with another 50 seconds remaining until reaching the 
next waypoint. This progression metric provides a dynamic measure of the aircraft's 
current position relative to its route, offering a useful context for timing the AC8 task. 
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Figure 23: Progress till next WP on Ac8 distribution. 

• Total time to next waypoint: since the probability targeted in this analysis spans from 
time t	 to t+5, the time to the next waypoint is calculated to provide a dynamically 
adjusted window shift for the progression feature mentioned earlier. For example, this 
approach ensures distinct probabilities for a progress of 50%, depending on whether the 
travel time between waypoints takes 5 or 10 minutes, thereby adapting to varying travel 
durations. 
 

• Correlation with vectoring tasks (S2): a vectoring task involves modifying an aircraft’s 
expected direction to avoid potential conflicts (Discussed on section 8). After completing 
such kind of tasks, ATCOs often return the aircraft to its original route by implementing 
an AC8 task. This hypothesis is supported by the available data, since the 48% of the 
aircraft that receive an S2 task, receive later an Ac8. Even though it does not appear to 
be such a great cipher, it is considerably higher than the base rate of Ac8s, which barely 
represent a 11% of the whole set of tasks. 

• Common waypoints: this line of reasoning stated that there could be waypoints which 
allegedly receive considerably more directs. During CODA simulations with ATCOs, it was 
observed that a high percentage of the Ac8 tasks applied by the ATCOs had the same 
waypoint as target. To achieve this, the ratio of occurrences in flight plans with Ac8 to 
occurrences in all flight plans was calculated. However, no relevant pattern was found. 

• Contact state: This would represent if the flight has been contacted by an ATCO, if the 
aircraft has not been contacted the probability of having an Ac8 within the next few 
minutes depends on the probability of being contacted first. 

• Released state: Once a CS task occurs, the probability of subsequent CS tasks, like Ac8, 
for the same flight immediately drops to zero, as the aircraft has already been handed 
over and is no longer under the ATCO's control. 
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Other features were analysed to find an accurate predictor of this task. However, none of them 
depicted more representative results than the prior described feature. Among these try-outs 
where the magnitude of the angles between waypoints for each route and the delay of the flight.  

5.2.4.2 Probability estimation 
Considering this set of features, for the estimator building the following probabilities are 
computed to get the desired output of the system. 

 

Figure 24: Ac8 probability for progress to next WP. 

• P (Ac8 base rate) = 0.11, extracted from the data after the filtering process. 
• P (Ac8t,t+5 | Ac8 ∩ progress and time to next WP) represents the probability that, 

knowing there is going to be an Ac8, the task is performed within the next 5 minutes. 
• P (Ac8 | S2) = 0.48, probability of having an Ac8 after an S2 has been received. 

So, the final approach to calculate the Ac8 probability is: 

If not S2 and not contacted: 

P (Ac8t,t+5) = P (Ac8t,t+5 | Ac8∩ progress and time to next WP) * P (CTE t, t+5 ) * P (Ac8 
base rate) 

If not S2, contacted and not released: 

P (Ac8t,t+5) = P (Ac8t,t+5| Ac8∩ progress and time to next WP) * P (Ac8 base rate) 

If S2 and not released: 

P (Ac8t,t+5) = P (Ac8t,t+5 | Ac8∩ progress and time to next WP) * P (Ac8 | S2) 

If released: 

P (Ac8t,t+5) = 0 
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For this system it must be noted that if the time till the next waypoint is less than the five minutes 
window shift, the value of the term P (Ac8 t,t+5| Ac8 ∩ progress to next WP) should be 1. 

5.2.5 Task of separation or sequencing: A1, A2, A3, S2 

5.2.5.1 Feature selection 
The tasks grouped in this section are related to various approaches an ATCO may employ to 
perform two different types of task: 1) avoiding conflicts by managing separation and 2) 
performing sequencing. Separation refers to maintaining the minimum safe distance between 
aircraft, while sequencing involves organizing the order of aircraft to ensure a safe flow. 
Although they are different tasks, they were grouped to have enough data to try to have more 
representative prediction models, and also because ATON does not make a distinction between 
them, as it is not simple from an external system to tell what the actual reason for some of the 
ATCO actions is. Table 15 depicts the individual tasks that form this group. Summarizing, we tried 
to find a joint model for them due to the following reasons: 

• Respond to the same events: all the selected tasks for this group are different strategies 
to apply in a separation or sequencing situation, it would be reasonable to think that 
they are triggered by similar conditions. 

• Same objective: each of these tasks are aimed to ensure both minimum safe separation 
between aircraft and ordered flow, managing airspace safety. 

• ATCO’s criteria: without considering other factors in a potential conflict between two 
aircraft, it is thought that this potential conflict could be solved by the ATCO using 
various alternative strategies. 

• Representativeness: there is a much more reduced number of instances of each task 
type, which makes the modelling more difficult and the potential results much noisier. 
However, grouping them this problem may be alleviated. 

Task Description 

A1 Change in level for separation or sequencing 

A2 Speed adjustments for separation or sequencing 

A3 Direct routing to a point for separation or sequencing 

S2 Vectoring for separation or sequencing 

Table 15: Separation or sequencing tasks. 

To find in the data patterns that contribute to the discrimination of flights related to these tasks, 
the following features have been computed for this estimator: 

• Number of in contact flights inside the sector: consistent with the reasoning applied in 
the analysis of the Ac8 task, would be logical to think that sector congestion plays a 
significant role in these types of tasks. However, increased traffic within the sector does 
not seem to correlate with a higher likelihood of performing such operations. When 
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there are more aircrafts in the sector, the overall probability of having a separation or 
sequencing tasks increases, however, the individual probability for each aircraft, which 
it is aimed in this work remains steady. 
 

• Closer predicted distance to other aircraft: The aim of this feature is to forecast all the 
distances that a current aircraft will have to rest of the ones that go through the sector. 
At a given time t, and in a window of t+15 min a sampling with frequency of 10 seconds 
is computed, calculating at each sample the distance to the current nearby aircrafts. It 
would be logical to think that separation tasks are more prevalent for the flights with 
reduced predicted separation. However, in our tests this is not reflected in our dataset, 
and therefore this measure cannot be used as a stable indicator of this kind of tasks. 

• Nearby airport destination: since sequencing tasks often as used to sort the aircrafts 
entry to an airport, it was thought to be interesting to verify if there is a correlation 
between the flights that had as a destination an airport close to the under-study sector, 
and those aircrafts that received a sequencing task. However, not enough evidence was 
found in this attempt. 

• Time till landing: as another attempt to find a pattern for the sequencing task, the 
expected time till landing was computed for all the contacted aircrafts with the aimed 
to discover a significant difference between those which receive sequencing tasks and 
those which do not. The reasoning behind this feature takes the lead of the previous 
one (nearby airport destination), since it would be logical to think that those aircraft 
that received such sequencing orders had a short or precise time till landing. 

Even though there is still work on this matter with hope to find interesting results, not clear 
evidence of these tasks was found yet in the calculated features. Not feasible prediction nor 
forecasting is thought to be achievable in the current state of the performed analysis. 

5.2.6 Simulations 

This section exemplifies the system functionality through several simulations intended to depict 
and clarify in greater detail the desired functionality of the system, showing time evolutions of 
the calculated probability predictions for individual flights. 

5.2.6.1 Simulations for CTE (Radar Contact) and CS (Contact Relase) 
In this section, the output of the system is computed for both CTE and CS scenarios. Several 
situations are considered and summarized in Table 16, which displays various times spent inside 
the sector. In those simulations, the CTE contact, if present, is 2 minutes before entering the 
sector, and 5-minute windows are used for analysis. For each situation, two plots are displayed: 
one for the case where there is CTE and one for the case that there is not.  
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Total time inside the sector 
expected CTE Instant Time window 

interval 

1 

2 5 

2 

7.5 

12 

20 

Table 16: Simulations description. 

Also, in Figure 29 and  Figure 30, a comparison of the time window interval in the output of the 
system is shown. This parameter represents the number of minutes from a given instant to cover 
with the prediction. For instance, if time window interval = 5 the probability computed by the 
system corresponds to the probability of the given task to happen within the next five minutes. 

Simulation explanation 

The following figures illustrate the simulations previously discussed, with each one showing two 
scenarios for the same time within the sector. Taking Figure 25 as an example, which can be 
applied to all simulations in this section, the y-axis represents the probability derived from the 
models for both CTE and CS tasks, while the x-axis represents the "time to intersect" feature. 
This feature measures the flight's progression, where a value of 20 indicates that the flight has 
not yet entered the sector, and a value of -20 indicates that it has been 20 minutes since the 
flight entered the sector. 

The top plot shows a scenario where a CTE task occurs at a "time to intersect" value of 2, 
meaning that the task is performed by the hypothetical ATCO two minutes before the flight 
enters the sector. In contrast, the bottom plot shows a scenario in which no CTE task is 
associated with the flight. These plots may be interpreted as representing the probability 
evolution for both tasks in real-time flight conditions. Several scenarios with different times 
inside the sector are computed to system behaviour for each case.  
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Figure 25: Simulation for time inside 1 min. 

 

Figure 26: Simulation for time inside 4 mins. 
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Figure 27:  Simulation for time inside 12.5 mins. 

 

Figure 28: Simulation for time inside 15 mins. 
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Figure 29 and Figure 30 illustrate the impact of the time window interval on prediction 
outcomes. As shown, the larger the time window interval, the earlier the predictions begin to 
rise, as a longer forecast period is being considered. 

 

Figure 29: Impact of time window shift on CTE estimation. 
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Figure 30: Impact of time window shift on CS estimation. 

5.2.6.2 Simulations for Ac5 (Procedural Level Change) 
 

Figure 31 and Figure 32 depict the output of the AC5 estimator in two distinct scenarios: one 
characterized by a significant FL difference and the other with no FL difference. In both cases, 
the estimator's output is displayed alongside the Radar contact (CTE) and Release (CS) 
estimations. This combined visualization facilitates a clearer understanding of the sequence and 
flow of events, allowing for a comprehensive analysis of the interactions between FL 
adjustments and communication dynamics within the sector. 
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Figure 31: Ac5 probability evolution for FL difference of 100 flight levels. 

In Figure 31 the behavior of CTE, CS, and Ac5 tasks can be observed when there is a FL difference 
of 100 flight levels. The probability of CTE starts to increase approximately 10 minutes prior to 
the intersection with the sector and drops to zero immediately after. Additionally, the 
probability of the CS task rises sharply when the flight intersects the sector, provided a CTE has 
occurred, and then stabilizes. Meanwhile, the probability of Ac5 increases during the 
intersection and settles at approximately 0.5 after CTE occurs. After the aircraft leave the sector, 
the probability of Ac5 decreases to zero. Conversely, in the absence of a CTE event, the 
probability of CTE shows a slight increase prior to the aircraft entering the sector but 
subsequently diminishes to zero in the absence of radar contact. Under these conditions, the 
probabilities of CS and Ac5 exhibit modest increases before rapidly returning to zero, reflecting 
the absence of a CTE event and the aircraft's departure from the sector. 
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Figure 32: Ac5 probability evolution for FL difference of 0 flight levels. 

In Figure 32, it can be analysed the behaviour of CTE, CS, and Ac5 tasks under a FL difference of 
0. The probability of CTE begins to rise approximately 10 minutes before the flight intersects the 
sector and rapidly drops to zero immediately after the intersection. The probability of the CS 
task increases sharply as the flight intersects the sector (assuming a CTE has occurred) and 
stabilizes shortly after. Meanwhile, the probability of Ac5 also increases slightly during the 
intersection and stabilizes at a much lower value. After the aircraft leave the sector, the 
probability of Ac5 decreases to zero. 

Conversely, when no CTE occurs, the probability of CTE still increases slightly before the flight 
intersects the sector but declines gradually to zero afterward, reflecting the absence of radar 
contact. In this case, the probabilities of CS and Ac5 show minor fluctuations but remain close 
to zero, indicating that these tasks are not triggered without a prior CTE and the aircraft leaving 
the sector. 

5.2.6.3 Simulations for Ac8 (Direct route to a point) 
The Ac8 predictor probability function has a unique characteristic compared to the others. Since 
the probability is calculated relative to the distance between waypoints, it generates a periodic 
pattern while the flight remains within the sector. The simulation is particularly interesting as it 
highlights the difference between scenarios where a vectoring separation task (S2) is performed 
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and those where it is not. In these cases, the probability transitions from an almost residual 
value to nearly a 50% chance of the task being performed. In these simulations, the CTE task is 
performed at 5 minutes before entering the under-study sector, meanwhile in the bottom plot, 
the S2 task is performed in the instant –5, meaning 5 minutes after entering the sector. 

 

Figure 33: Ac8 probability comparison. 

It can be noted that the probability reaches values greater than zero even before entering the 
sector, this happens because from the moment an ATCO establishes radar contact, other tasks 
could be performed even if the aircraft is not yet inside the sector. It is also interesting to 
mentioned that in case that the distance between waypoints of all the trajectory of the aircraft 
is lower than the window interval of 5 minutes, the output of the system would remain steady 
as it can be seen in Figure 34. 
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Figure 34: Ac8 probability special case. 

5.3 CODA ATCO Task Prediction Models Validation (v2) 

Since the second approach relies on statistical descriptions rather than traditional machine 
learning methods, standard classification metrics typically used for ML model evaluation cannot 
be directly applied to assess its performance. Instead, the validity of this approach can be related 
to the analysis of the robustness of the calculated features across the dataset, as the models 
themselves serve as statistical descriptors without training process. 

To ensure the reliability of the features, the process of feature analysis was initially conducted 
on reduced samples of the data. Only those features that demonstrated consistent behaviour 
and robustness when applied to the entire dataset were retained for the final model. This matter 
is critical to maintaining the integrity and explanatory power of the statistical approach, even in 
the absence of conventional performance validation metrics. The following figures illustrate the 
distribution of the computed features for different random subsets of the available data to verify 
that the distribution is consistent. 



D3.1 - ATCO TASKS PREDICTION MODEL 
Edition 00.02.00 

	 	

	
 

Page | 75 
© –2024– SESAR 3 JU 

  
 

 

Figure 35: Distribution comparison for time to intersect on CTE. 
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Figure 36: Distribution comparison for time to leave on CS. 
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Figure 37: Distribution comparison for Ac5 features. 
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6 Conclusion  

The first iteration of CODA ATCO Task Prediction Model revealed both promising aspects and 
notable limitations. While the model achieved high overall accuracy, it predominantly excelled 
in predicting common ‘no task’ event, failing the prediction of ‘non-zero’ tasks in several cases 
and generating false alarms in others. The limitations highlighted by the initial iteration were 
produced by the imbalance in the dataset, the complexity of handling multiple labels, and the 
need for better task-specific prediction accuracy. These observations suggested a possible path 
for improvement in subsequent iterations. 

The second iteration of the CODA ATCO Task Prediction Model offers several noteworthy 
observations. On one hand, for tasks where clear patterns were identified in the data, this 
approach provides a more stable and interpretable solution compared to Version 1. The models 
not only exhibit greater simplicity but also reflect logical reasoning behind the execution of each 
task. On the other hand, for tasks where no sufficiently strong patterns were detected, the 
predictions rely on the base rate of occurrence extracted from the data, falling short of achieving 
the desired level of customization. 

Future work could benefit from deeper exploration of these patterns, including discussions with 
ATCOs to better understand and integrate their reasoning into the system, rather than relying 
solely on the given data. Such an approach could address the challenges associated with 
predicting ATCOs’ decision-making criteria, as different ATCOs may adopt varying operational 
strategies for the same situation or task. 

In conclusion, the development of the two versions demonstrates that, while challenging, 
certain ATCO task predictions can be effectively achieved using simple and interpretable models, 
even without the traditional training associated with machine learning methods. For tasks where 
no clear patterns were identified through statistical analysis, a hybrid approach combining 
aspects of Version 1 and Version 2 could be considered. The metrics obtained from Version 1 
indicate that LSTM models can enhance overall system performance, achieving decent metrics 
despite a loss of interpretability. As previously noted, the use of LSTM models for tasks lacking 
discernible patterns represents a viable option. This suggests the potential for a hybrid system 
that integrates descriptive statistical methods with machine learning models, such as LSTM, to 
optimize performance while balancing explainability and predictive accuracy. 
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8 List of acronyms  

	
Acronym Description 

AB  Advisory Board  

ADS-B Automatic Dependent Surveillance–Broadcast 

AIP Aeronautical Information Publication 

ATCO Air Traffic Controller 

ATC Air Traffic Control 

ATFCM Air Traffic Flow and Capacity Management 

ATM Air Traffic Management 

ATON Air Controller Task (dataset) 

COMPAS Cognitive system Model for Simulating Projection-
based behaviours of Air traffic controllers in 
dynamic Situations 

CODA Controller Adaptive Digital Assistant 

eTLM Enhanced Traffic Load Monitoring 

FIR Flight Information Region 

FP Flight Plan 

FL Flight Level 

GIPV Flight plans dataset 

ML Machine Learning 

SSR Secondary Surveillance Radar 

STAR Standard Terminal Arrival Route 

Table 17: List of acronyms 

 


