
 

   

 

 

   

 

 
 

 

 

 

Abstract 

This document establishes the initial work carried out in the project, focused on: 
● The definition of the State of the Art (SOA) for relevant themes touched within the project 
● The presentation of use cases showing the potential application of the      Controller Adaptive 

Digital Assistant (CODA) solution to contexts beyond the one addressed by the project (support 
for en-route air traffic controllers) 

● The detailed description of the Operational Service and Environment Definition (OSED). 
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1 Executive summary 
STATE OF ART. The project is built upon the most recent achievements from research and literature 

on Human AI teaming, real time objective assessment of ATCOs mental states, prediction of incoming 

tasks and their impact on mental states, adaptation strategies for human AI systems, the state of the 

art for explainable systems and on the outcomes of previous SESAR projects (such as the STRESS 

project, the MINIMA project, the eCOMMET project, the COTTON project, and other project focused 

on AI based adaptable and explainable systems such as ARTIMATION, MAHALO, AISA and the HAIKU 

project). 

GENERIC USE CASES. Although the project will focus on the en-route controller use case, the proposed 

solution is expected to be applicable in the future also to other relevant contexts which have been 

identified thanks to the support of external experts (e.g. tower ATCOs, Approach ATCOs). At the same 

time, although the solution as prototyped in the project will make use of a limited set of AI digital 

assistants interventions and will focus on specific scenarios, several future use cases enabled by the 

CODA solutions has been identified with the help of end users, such as: Storm Deflection Symphony 

(Advancing Human-AI Collaboration for Dynamic Air Traffic Management), Navigating Turbulence 

(Enhancing Adaptive Automation for Seamless Human-AI Collaboration in Adverse Weather 

Conditions), Harmony in Complexity (Advanced Human-AI Collaboration in Dynamic Air Traffic 

Management with Enhanced Weather Integration), Dynamic Conflict Resolution and AI Delegation in 

Air Traffic Management and AI Enhanced Air Traffic Control (Dynamic Adaptation in High-Stress 

Situations). 

CODA OSED. The overall objective of the CODA project is to increase ATM's efficiency, capacity, and 

safety, maximising human-AI teaming by developing a system in which tasks are performed 

collaboratively by hybrid human-machine teams and dynamically allocated through adaptive 

automation principles. To do so CODA focus on developing a solution that predict relevant mental 

states of en-route air traffic controllers so to anticipate possible problems and trigger specific actions 

(such as the activation of Digital Assistants). 

The improvements proposed by the CODA project will impact the Air Traffic Controllers (ATCOs) work 

in an en-route sector with a congested traffic situation environment. The solution could enable some 

changes in tasks and roles of ATCOs, which are investigated by the project but not strictly defined, as 

this will be highly impacted by the technical environment that will be available in the future (e.g. highly 

automated tools, AI digital assistants). 

CODA starts from some high-level assumptions: i) real time assessment of ATCOs mental states is 

allowed; ii) reliable AI based Digital Assistants will be available to carry out both routine tasks and more 

complex ones (including decision making and actions execution) 

It is expected that the project will have an impact on different stakeholders within the ATM domain 

(ANSPs, Airspace Users) in terms of:  

● Human performance: Exploiting automation up to its higher levels to perform non-critical 

tasks, adapting the human-machine interface with different explainability levels, and 

foreseeing and preventing possible problems are expected to reduce ATCOs' workload and 

enhance their performances.   
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● Efficiency, capacity and safety: the developed AI system will then provide the additional 

capacity to meet the challenges of increasing air traffic complexity due to sustained growth 

and new airspace users and support more efficient and environmentally friendly operations 

while maintaining and improving current safety levels. 

The CODA project will start with a TRL (Technology Readiness Level) 1     , and it sets the goal of 
achieving a TRL 2 by the end of the work. 

The CODA solution is an enabler for adapting systems based on AI tools and other types of 
automation. Once the feasibility of the concept is confirmed within the current project, further steps 
would be: i) to Investigate the use of the system also in other relevant use cases (such as Tower 
controllers, TMA controllers) ii) to assess the precise impact on KPIs once the system is actually 
connected to Digital Assistants (out of scope for this project). 
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2 Introduction 

2.1 Purpose of the document 

This document provides the specifications covering the State of the Art (SOA) related to the main topics 

addressed in the CODA project and defines the Operational Service and Environment Description 

(OSED) of the project. The document describes in detail: 

● The State of the Art which covers:   

o State of the art for Human-AI interaction  

o State of the art for operators’ state assessment  

o State of the art for task prediction models  

o State of the art for mental states prediction  

o State of the art for adaptive systems  

o State of the art for explainable systems 

● The definition of generic use cases 

● The Operational Service and Environment Definition (OSED) which describes: 

o Operational characteristics 

o Roles and responsibilities  

o CNS/ATS description  

o Applicable standards and regulations  

o Previous and new SESAR operating method  

o CODA use cases  

The document is completed by the Appendix, which includes the Cost and Benefit Impact Mechanisms. 
The implementation of its content shall present how the SESAR Solution elements contribute 
(positively or negatively) to the delivery of performance benefits and costs. 

This document defines the operational service and environment (OSED) for CODA at TRL2. 

2.2 Scope 

As stated above, the purpose of this document is to present the CODA Operational Service and 
Environment Description (OSED) and to provide the result related to the first two tasks of the WP2 - 
Adaptive automation state of the art and use cases definition, namely T2.1 State of the Art and T2.2 
Operational concept and use cases definition. 

The work contained in this deliverable is closely linked to the deliverable D2.2 FRD – Functional 
Requirements Document which will detail the CODA system functional description and the necessary 
logical interfaces with other systems, covering functional and interface requirements. 

2.3 Intended readership 

The intended audience for this document primarily consists of all the partners involved in the CODA 
project.  

External to the SESAR project, other stakeholders are to be found among: 
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● ATM Stakeholders: 
● ANSPs (Air Navigation Service Providers) 
● ATM infrastructure and equipment suppliers 
● Airspace users 
● Airport owners/providers 
● Affected National Supervisory Authorities (NSA) 
● Affected staff organisations 
● Regulatory and standard organisations: 

o EASA 
o ICAO 
o European ATM Standards Coordination Group (EASCG) 
o EUROCAE 

● Other Single European Sky ATM Research (SESAR) solutions partners.  

2.4 Background 

The CODA project aims to demonstrate the feasibility of developing a system in which tasks are 
collaboratively performed by hybrid human-machine teams and dynamically allocated through 
adaptive automation principles. 

To achieve this goal, the project consolidates the work previously undertaken in the SESAR 
Exploratory Research projects. The findings from ARTIMATION and MAHALO will be utilized to develop 
an AI-based adaptable and explainable system, allowing the system to proactively prevent future 
performance or safety issues. The outcomes of MINIMA and STRESS will be employed for a 
neurophysiological assessment of mental states. This will enable the system to discern operators' real-
time levels of workload, attention, stress, fatigue, and situation awareness. The results from COTTON 
and eCOMMET will contribute to the development of prediction models, anticipating future situations. 
This enables the system to understand which activities will be undertaken by operators in the future 
and their potential impact on human factors. 

2.5 Structure of the document 

This document has the following structure: 

Chapter 1 (Executive summary): contains a brief description of the document. 

Chapter 2 (Introduction): contains the purpose, the scope, the intended readership, the background, 

and the structure of this document. Further significant information such as glossary of terms and list 

of abbreviations have been included at the end of the chapter. 

Chapter 3 (State of the art): given the overall objective of enhancing efficiency, capacity, and safety in 
Air Traffic Management (ATM) through optimizing Human-AI collaboration, in this chapter the primary 
goal is to assess the latest advancements at the forefront of research and development across various 
domains. These include reviewing the current state of the art of Human-AI teaming, operators’ state 
assessment, tasks prediction models, mental states prediction models, adaptive systems, and 
explainable systems. 

Chapter 4 (Generic use cases): This section provides a list of possible use cases of application of the 

proposed CODA project in the aviation domain. 
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Chapter 5 (Operational service and environment definition): This chapter describes the SESAR solution 

under the scope of the document, detailing the operational environment and operational concept 

aspects.  

Chapter 6 (Key assumptions): here are provided the key assumptions related to relevant topics 

addressed by the project CODA, such as key assumptions for models' development and key 

assumptions related to future AI systems. 

Chapter 7 (References): the references, and applicable documents. 

Appendix A: describes the Cost and Benefit mechanisms applied to the CODA project. 

2.6 Glossary of terms 

Term Definition Source of the definition 

Air Traffic All aircraft in flight or operating on the maneuvering 

area of an aerodrome. 

ICAO Annex 11 - ATS 

Air Traffic 

Controller 

• Qualified in accordance with ICAO Annex 1  

– Personnel Licensing and holding a rating  

appropriate to the assigned functions, 

• A person authorized to provide air traffic  

control services. 

EUROCONTROL  

ATM Lexicon 

Air Traffic 

Management 

The dynamic, integrated management of air traffic  

and airspace including air traffic services, airspace  

management and air traffic flow management – 

safely, economically and sufficiently – through the  

provision of facilities and seamless services in  

collaboration with all parties and involving  

airborne and ground-based functions. 

ICAO 4444 - ATM 

Air Traffic Services  A generic term meaning variously, Flight Information 

Service (FIS), Alerting Service (ALRS) and Air Traffic 

Control Service (ATC) (area control service, approach 

control service or aerodrome control service). In this 

document, when the term ATS is used, it is usually 

referring to TWR or AFIS. 

ICAO, Annex 11 

Sector A part of a control area and/or part of a flight  

information region or upper region. 

EU 2015/340 

 

Table 1: glossary of terms 

 

2.7 List of acronyms 

Term Definition 

AI Artificial Intelligence 

AISA AI Situational Awareness Foundation for Advancing Automation 

ANSPs Air Navigation Service Providers 
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ARTIMATION Transparent Artificial Intelligence and Automation to ATM Systems 

ATCo Air Traffic Controller 

ATCS Air Traffic Control System 

ATM Air traffic management 

ATS Air traffic services 

BDI Beliefs Desires Intention 

BIM Benefit Impact Mechanism  

CNS Communication Navigation Surveillance 

CNS Central Nervous System 

COCOM Cognitive Control Model 

CODA Controller Adaptive Digital Assistant 

ConOps Concept of Operations 

COTTON Capacity Optimisation for Trajectory Based Operations 

CPDLC Controller and Pilot Data Link Communication 

CSE Cognitive Systems Engineering 

DES Digital European Sky 

EASA European Union Aviation Safety Agency 

EBA Eyeblink Amplitude 

EBD Eyeblink Duration 

EBR Eyeblink Rate 

ECG Electrocardiography 

ECOM Extended Control Model 

eCOMMET       enhanced COMplexity ManagEment Tool 

EDA Electrodermal Activity 

EEG Electroencephalography 

EOG Electrooculography 

ERP Exploratory research plan 

eTLM Enhanced Traffic Load Monitoring 

GA Grant agreement 

GDPR General data protection regulation 

HAIKU Human AI teaming Knowledge and Understanding for aviation safety 

HAIT Human-AI Teaming 

HE Horizon Europe 

HMPE Human Machine Performance Envelope 

HR Heart Rate 

HRV Heart Rate Variablity 

ID Identifier 

JCF The Joint Control Framework 

LACC Levels of Autonomy in Cognitive Control 

LOAs Levels of autonomy 

MAHALO Modern ATM via Human/Automation Learning Optimisation 

MINIMA MItigating. Negative Impacts of Monitoring high levels of. Automation 

MSAW Minimum Safe Altitude Warning 
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MTCD Medium Term Conflict Detection 

MUFASA Multidimensional Framework of Advanced SESAR Automation 

OBJ Objective 

OOTL Out-of-the-loop 

OSED Operational service and environment description 

PFC Pre-Frontal Cortex 

PM Process Mapping 

PPC   Posterior Parietal Cortex 

PPG Photoplethysmography 

PPP Perceived Privacy Protection 

SA Situation Awareness 

SAT Situation Awareness-based Agent Transparency 

SCL Skin Conductance Level 

SCR Skin Conductance Response 

SESAR Single European sky ATM research 

SESAR 3 JU SESAR 3 Joint Undertaking 

SNS Sympathetic Nervous System 

SOA State of the Art 

SRIA Strategic research and innovation agenda 

STCA Short Term Conflict Alert 

STRESS Human Performance neurometricS Toolbox foR highly automatEd Systems deSign 

TBO Trajectory-Based Operations 

TID Touch Input Device 

TRL Technology Readiness Level 

UAM Urban Air Mobility 

XAI Explainable AI 

Table 2: list of acronyms 
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3 State of the art 

This chapter presents the results of a preliminary study to set the basis for the work in the CODA 
project. A list of relevant topics has been generated, and a look at the state of the art in terms of 
literature, research projects and related solutions in the aviation domain has been carried out. The 
objective is: 

● To define the concepts that will be addressed in the project (see the green circles in the 
following image) 

● To highlight the most advanced results in terms of technology, knowledge, and methods in the 
different fields from which the project will start to perform the foreseen work 

● To show where the project will improve concerning the SOA 

 

Figure 1: Overview of project structure. The contents highlighted by the green circles are the ones introduced 
and defined in this deliverable 

 

 

3.1 Relevant research projects 
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The following projects cover different technologies, techniques and systems that are relevant for the 

CODA project. All the projects cover one or more of the following topics: 

1) assessing operator status to provide valuable insights for adapting automation levels to the 

current mental state of operators. These projects highlight the importance of understanding 

and adapting to the mental states of operators in high-stress, high-automation environments, 

offering valuable insights for the development of adaptive automation systems in the field of 

Air Traffic Management.  

2) identifying forthcoming controller tasks and mental workload, ultimately contributing to the 

optimization of human-AI interactions within the realm of air traffic management (in particular 

eCOMMET and COTTON projects).  

3) assessing operator status and AI transparency, aiming to strike a balance between optimized 

AI solutions and the need for explainability and user understanding. The insights gained from 

these projects provide valuable design guidelines for enhancing transparency and 

customization in AI systems, ultimately influencing their acceptance and usability by Air Traffic 

Controller (ATCos). These findings will greatly assist CODA in defining how to deliver 

predictions to users, determine the appropriate level of detail, and suggest effective 

interactions with AI tools to ensure a seamless and productive human-AI teaming experience. 

A brief description of the relevant projects is provided below. 

● The STRESS (2018) project explored the impact of advanced highly automated systems on en-
route ATCos performance to support the ATCos in future ATM operational scenarios. By using 
real time assessment of stress, workload and vigilance data coming from ATCos interacting 
with highly automated systems, the STRESS project developed a set of guidelines to be applied 
in designing a personalized neurophysiological measurement toolbox to optimize performance 
and safety for Air Traffic Controllers (ATCos). The outcomes derived from this project will be 
used during the CODA project to derive a new HMPE index, based on both the 
neurophysiological and predicted internal states of the operator.  

 

 
 

● The MINIMA (2018) project investigated the possible negative effect of too much automatism 

on vigilance and Situation Awareness (SA) due to high levels of automation in future ATM 

scenarios. This phenomenon is called “Out of the loop (OOTL)”. During the project, it has been 

developed and validated a neurophysiological index based on EEG activity of the controller. By 
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monitoring the controller’s vigilance variation, this index can identify in real time loss of 

attention of the controller, triggering online an adaptive automation system, capable to 

intervene and so mitigate the OOTL phenomenon and possible mind wandering effect. In 

CODA this index will be used to calibrate from one side and to feed from the other side the 

predicted model regarding the future state of the operator. 

● eCOMMET (2019) - Cognitive Complexity Tool to refine demand and capacity measures. The 

results will help CODA by providing a first model that can be expanded to identify the future 

mental state of the controller. (Final Report https://cordis.europa.eu/project/id/731730) 

● The COTTON (2018) - Capacity Optimisation for Trajectory Based Operations - project 
addressed the analysis and quantification of complexity in a Trajectory-Based Operations 
(TBO) environment considering the future SEAR solutions. It proposed innovative solutions for 
integrating predicted trajectories’ uncertainty within the complexity and workload assessment 
methods and the Capacity Management processes. The results of this project will help CODA 
identify the future controller tasks and the associated mental workload. (Final Report 
https://cordis.europa.eu/project/id/783222) 

● The MAHALO (2022) - Modern ATM via Human/Automation Learning Optimisation 2022- 

project examined strategic conformance and transparency in human-AI interaction, aiming to 

balance optimized AI solutions that require explainability with conformal AI solutions easily 

understood by Air Traffic Controllers (ATCos). Results provided design guidelines, highlighting 

that greater transparency can enhance understanding but may not guarantee system 

acceptance. Customized transparency, with AI adapting to user needs, can lead to deeper 

understanding and acceptance. The project emphasized hybridizing ML and adaptive systems 

to enhance automation, affecting task performance and responsibility distribution between 

humans and AI. The level of automation significantly impacts human-AI team performance in 

various situations. The project results will help CODA in defining how to deliver the predictions 

to users, the level of detail and the suggested actions. 

 
● The ARTIMATION (2022) - Transparent Artificial Intelligence and Automation to ATM Systems 

- project evaluated the influence of various visualization techniques for ATM CD&R and delay 
prediction algorithms and investigated and explored the differential human performance 
impacts on expert and student controllers. Results showed that explanations should be 
delivered on demand and should be integrated into the system and not available on external 
systems. Air Traffic Controllers (ATCos), when facing pressure, don't always have time to 
thoroughly examine explanations from the AI. These results will help CODA when defining how 
the proposed AI tools will interact with the users, to guarantee a good human-AI teaming.  

https://cordis.europa.eu/project/id/731730
https://cordis.europa.eu/project/id/783222
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● The AISA (2022) project: By developing an intelligent situationally aware system AISA proposed 
a solution geared towards improving collaboration between humans and machines within the 
air traffic control environment. The project also addressed the issues of transparency and 
generalization, presenting a vision for automation within the en-route Air Traffic Control (ATC) 
operational environment. Although the project contributed to develop an intelligent situation-
aware system that enables the same team SA to be shared between controllers and AI, the 
system still faces an issue which is the ability to analyse the controller's intent to provide 
adaptable assistance to the controller. Thus, the AISA project lays the fundamental 
groundwork for the CODA project in creating a mindful digital assistant. However, the CODA 
project will need to consider these limitations, considering the air traffic controller's intent. 

 

   
 

● The HAIKU (2025) project: an ongoing project that focuses on Human-AI teaming is HAIKU. Its 

main objective is to deliver prototypes of AI Digital Assistants for different aviation segments 

and users, by developing guidance and assurance procedures, and by exploring Human-AI 

Teaming via several interactive prototypes. Within the context of human-AI teaming, it aims 

to design human-machine teaming for the different aviation applications (cockpit, ATM, UAM, 

airport) to extend the system performance envelope, considering timeframe of operations, 

complexity, type of involved human tasks, criticality. 
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The framework for Human-AI teaming that will be proposed in HAIKU will help CODA in designing 

the automated digital assistant. 

3.2 State of the art for Human-AI interaction 

3.2.1 Human-Machine interaction and Human-AI teaming: a first definition 

As stated in the Description of the Action (see 101114765 CODA Grant Agreement Annex 1 (Part B), 

“The strategic objective of the CODA project is to increase the efficiency, capacity, and safety of ATM 

maximising Human-AI teaming by developing a system in which tasks are performed collaboratively by 

hybrid human-machine teams and dynamically allocated through adaptive automation principles.”.  

Therefore, the first step is to define what Human-AI teaming is, what are the current available 

methods to describe and achieve it, and what has been done so far in terms of research, especially 

in the aviation domain. 

The first thing to be highlighted is that, when dealing with AI, the research community moved from 

“Human-Machine” to “Human-AI”, and from “interaction” to “teaming”, somehow stressing the fact 

that, when dealing with AI-powered solutions, a different approach should be considered to design 

how humans should use those systems. The term “human-AI teaming” describes the collaboration 

between humans and artificial intelligence (AI) systems. It’s unclear who specifically coined the term, 

but it’s now widely used in AI research and development field.  

Human-AI interaction refers to the dynamic interplay between individuals and AI-powered machines 

or algorithms, encompassing a wide range of activities from using voice-activated virtual assistants to 

receiving personalized recommendations on digital platforms (Berretta et al., 2023). This interaction 

has significantly reshaped how we access information, make decisions, and perform tasks, ultimately 

augmenting our capabilities. 

While human-AI interaction represents the interface through which we engage with AI, the concept of 

human-AI teaming takes this interaction to a higher level of collaboration and synergy. The concept 

involves AI systems taking on roles and responsibilities within a team, functioning interdependently 

with human team members. This term expresses a system that expands from one-human-one-

machine (e.g., a human-AI interaction or a human-robot interaction) to a team of more than two 

heterogeneous entities, each with their roles and responsibilities. Human-AI teaming involves humans 

and AI systems working together as cohesive units, combining their strengths to achieve common 

goals. This collaborative approach acknowledges the unique abilities of each entity, where humans 

contribute contextual understanding, creativity, and ethical judgment, while AI brings computational 

power, data analysis, and automation (National Academies of Sciences, Engineering, and Medicine, 

2022). Human-AI teaming is not merely about humans using AI as tools but rather a collaborative 

partnership that leverages the strengths of both parties to enhance decision-making, problem-

solving, and overall performance. Human-AI teaming holds immense significance in various fields, 

including aviation, healthcare, and manufacturing, as it offers the potential for increased efficiency, 

accuracy, and innovation. What sets human-AI teaming apart from traditional human-AI interaction 

are factors such as shared mental model and adaptive learning. In teaming, AI systems can adapt to 
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human preferences and vice versa, leading to more fluid and effective cooperation. Furthermore, the 

synergy between humans and AI in teams allows for more complex problem-solving and the tackling 

of challenges that neither could handle alone (Flathmann et al., 2023). 

Since there is no single, conclusive definition of Human-AI teaming that can provide a reference 

framework for the CODA project, Human-AI Teaming will be considered as: 

“The collaborative partnership between human operators and AI applications, wherein AI 

applications provide support to human operators while maintaining transparency by involving 

them in the decision-making and reasoning processes”. 

This includes the AI system predicting the future mental state of the operator and adapting its 

automation strategy accordingly. 

3.2.2 Factors contributing to good Human-AI teaming 

Having provided the definition of Human-AI teaming, the next question is which factors influence the 

teaming with AI solutions. For an effective interaction and a successful teaming of humans and AI 

agents, multiple factors must be considered.  

Trust is one of the crucial factors that are essential for the acceptance and utilization of AI as a team 

member (Hagos and Rawat, 2022; National Academies of Sciences, Engineering, and Medicine, 2022; 

Pinto et al., 2022). To build trust, human operators need to have enough information about the system 

to understand when they can rely on AI and when they cannot (McDermott et al., 2018). Failing to 

adjust the right level of trust can result in either avoidance or over-reliance on the intelligent agent 

(Parasuraman & Riley, 1997; Robinette et al., 2016).   

Another significant factor for proper operation of Human-AI teams is agency, which is defined as the 

authority and capability of an agent to act based on their own discretion and timing (Lyons & Wynne, 

2021; Schlosser, 2019).  Agency is considered the crucial distinctive characteristic that separates 

autonomy from automation. It transforms the role of intelligent systems from an assistant who follows 

instructions to a teammate who can take the initiative and make decisions independently (Lyons et al., 

2021). 

Task allocation and interdependency is the next significant concern that must be properly addressed 

(Ali et al., 2022). What must be carefully considered is the type and extent of interdependence in a 

team of humans and machines. The interaction between humans and AI agents can happen at different 

levels, from no coexistence to close collaboration (Aaltonen et al., 2018). Task allocation endeavours 

must consider not only the level of collaboration, but also the interdependence of tasks in order to 

make sure both parties have a collective commitment to achieve the objectives and share the 

teamwork across the tasks (Lyons et al., 2021). 

Another important attribute of successful human-AI teams is their adaptability, which implies the 

capability to respond adaptively to changing environmental factors and task requirements (Mosier et 

al., 2017). Operators should be able to modify the extent of support offered by AI (i.e., adaptable 

automation) and, also, the intelligent agent should have the capability to predict the change in 

knowledge and behaviour of operators and adjust their workload and the extent of their assistance 



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 22 
© –2024– SESAR 3 JU 

  
 

accordingly (i.e. adaptive automation) (Hagos & Rawat, 2022; Miller et al., 2005; Mosier et al., 2017; 

Oppermann, 1994). 

Communication and coordination are two interconnected factors essential for the proper 

performance of any human-AI team (National Academies of Sciences, Engineering, and Medicine, 

2022; Panagou et al., 2023). Communication has a vital role to play in supporting work procedures, 

fostering interdependencies among team members, and facilitating the cultivation of shared situation 

awareness, shared mental models, and goal alignment (Lyons et al., 2021). Communication in Human-

AI teams must be coordinated, which means it should be precise and appropriately targeted to the 

correct team member at the correct time. Successful teamwork requires adeptly orchestrating the 

sequencing and timing of interdependent actions (National Academies of Sciences, Engineering, and 

Medicine, 2022). 

A crucial prerequisite for optimal team performance involves team members’ congruent 

understanding of their tasks, teamwork procedures, and the operational context. This concept is 

commonly referred to as a "shared mental model" (Mosier et al., 2017). Sharing mental models 

empowers human-AI teams to proactively predict team needs, actions, and upcoming challenges 

(Lyons et al., 2021). Shared mental models within teams contribute to the development of shared 

situation awareness. It is commonly recognized that effective interaction between humans and AI 

systems requires robust situation awareness (SA). This encompasses the understanding of both 

present and predicted performance, status, and information possessed by each entity (National 

Academies of Sciences, Engineering, and Medicine, 2022). 

Effective human-AI teaming necessitates a high level of transparency in intelligent systems. The 

concept of transparency comprises several facets, such as organizational transparency, process 

transparency, data transparency, algorithmic (logic) transparency, and decision transparency (National 

Academies of Sciences, Engineering, and Medicine, 2022). The facet of transparency that facilitates 

human oversight and cooperation with AI systems is referred to as system transparency, defined as 

"the understandability and predictability of the system" (Endsley et al., 2003, p. 146). System 

transparency comprises two interrelated components: Display transparency, which provides real-time 

visibility into the ongoing operations of the AI system, enhancing situation awareness (SA); 

Explainability, which offers retrospective insights into the system's actions or recommendations, 

elucidating the underlying logic, processes, factors, or reasoning (National Academies of Sciences, 

Engineering, and Medicine, 2022). 

The solution proposed by CODA will impact mainly on task allocation, interdependency, 
adaptability, situation awareness, and transparency. 

3.2.3 Consequences of bad Human-AI teaming 

In a safety-driven domain such as aviation, a better understanding of how Humans and AI should 
collaborate is crucial so to avoid the consequences of a bad design of Human AI teaming, especially in 
terms of performance, safety and operators' wellbeing. Bad Human-AI Teaming can have significant 
consequences that extend beyond the immediate collaboration between humans and artificial 
intelligence (AI) systems.  
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One prominent consequence is the potential for detrimental effects on team performance (Bienefeld 
et al., 2023). When human-AI teams fail to function cohesively and synergistically, it can result in 
inefficiencies, errors, and decreased productivity (Nols et al., 2023). Poor collaboration may lead to 
misunderstandings, conflicts, and suboptimal decision-making, which, in turn, can negatively impact 
overall team outcomes (Bezrukova et al., 2023).  

Automation complexity can lead to operator confusion and unrealistic expectations (Endsley, 2019). 

Further, when automation functions correctly, people may become complacent, but high workload 

situations can overwhelm them (Bainbridge, 1983). Overseeing automated systems can result in 

slower problem identification and understanding, primarily due to reduced situational awareness, and 

this can result in catastrophic consequences in novel or unexpected situations (Sebok & Wickens, 

2017). Research has shown that human decision-making can be influenced by automated errors 

(Endsley and Jones, 2012). As an illustration, the 2009 Air France Flight 447 accident highlights the 

critical nature of human-AI collaboration while also serving as a reminder of the potential 

consequences that can arise when such teaming is not properly addressed. The Air France Flight 447 

accident in 2009 revealed the difficulties posed by the complexity of the situation, including severe 

weather conditions and airspeed sensor malfunctions. Unrealistic expectations about the Airbus 

A330's automated systems led to complacency and a decline in manual flying skills. The crew's reduced 

situational awareness and failure to identify the stall condition, coupled with inadequate guidance by 

the automated system, resulted in slower problem recognition. Additionally, the influence of 

autopilot’s recommendations on decision-making, even when those recommendations were 

inappropriate, demonstrated the complex dynamics of human-AI teaming. These factors contributed 

to the tragic consequences of the accident. 

Additionally, safety concerns arise when human-AI teaming is subpar. A lack of effective collaboration 
can result in safety hazards, especially in critical domains such as healthcare or aviation (Zhang et al., 
2023). Miscommunications, misinterpretations, or AI system errors can lead to unsafe practices or 
decisions that jeopardize the well-being of individuals or the integrity of systems. Thus, bad human-AI 
teaming not only hampers performance but also poses risks to safety, underscoring the importance of 
fostering effective collaboration in these partnerships. 

To harness the full potential of human-AI collaboration while ensuring safety, it is essential to address 
and mitigate the challenges associated with suboptimal teaming dynamics (Pflanzer et al., 2023). 

3.2.4 General methods and models 

In recent years, extensive research has explored the complex dynamics of human-AI teaming across 

different domains, resulting in the development of descriptive models, theoretical frameworks, and 

best practices derived from real-world experiences in human-automation teaming. These findings 

offer a comprehensive insight into the evolving landscape of human-AI collaboration. The descriptive 

models provided in this research context include various aspects, such as the integration of AI systems 

into team structures, the allocation of tasks and responsibilities between humans and AI agents, and 

the influence of AI on team communication and decision-making processes.  

3.2.5 A definition for teaming 



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 24 
© –2024– SESAR 3 JU 

  
 

In the broader context of team studies Salas et al. (1995) define teams as groups united by common 

goals, roles, and interdependence. Additional team characteristics that have been identified in this 

body of research include decision making within a task context, specialized task-related knowledge 

and skills, and performance within the task-context constraints of time pressure, workload, and other 

conditions, with mental models playing a crucial role in task-related knowledge representing how 

team members organize and interpret information.  

Cooke et al. (2007) emphasize further the interdependent nature of team dynamics, highlighting the 

need for coordination among members.  

3.2.6 Principles for Human-AI teaming 

As anticipated in the beginning of this chapters, many authors have specifically focused on the study 

of teams involving humans and automated systems, and they have provided definitions for this type 

of team. For example, Cuevas et al. (2007) define human-AI teams as "one or more people and one or 

more AI systems requiring collaboration and coordination to achieve successful task completion.”  An 

easily applicable definition in the context of Human-AI teaming is provided by McNeese et al. who 

characterize a human-autonomy team as a team where humans and autonomous agents operate as 

coordinated units.  

Recently, the National Aeronautics and Space Administration has outlined three fundamental 

principles for human-autonomy teams: (1) bi-directional communication about mission goals and 

rationale; (2) transparency regarding what the automation is doing and why; and (3) operator-directed 

interfaces for dynamic function allocation (Brandt et al., 2018).  

Forbus (2016) emphasizes the importance of AI possessing autonomy, a shared focus with humans, 

natural language understanding, and effective interaction skills, while Boardman & Butcher (2019) 

strongly highlight that in order to have meaningful control, the human must have (1) freedom of 

choice; (2) the ability to impact the behaviour of the system; (3) time to engage with the system and 

alter its behaviour; (4) sufficient situation understanding; and (5) the ability to predict the behaviour 

of the system and the effects of the environment.  

Since it is crucial for human operators to accept artificial intelligence systems as true teammates, 

authors such as Wynne and Lyons (2018) focused on understanding how humans perceive 

autonomous partners, emphasizing the concept of "autonomous agent teammate-likeness” and 

exploring how humans view AI as more than just tools, perceiving them as altruistic, benevolent, 

interdependent teammates.  

However, according to the National Academies of Sciences, Engineering, and Medicine, 2022 although 

there has been some work, particularly using descriptive models, to describe the elements and factors 

relevant to human-AI teaming, to date none of these efforts has progressed toward computational 

models or quantifications of the relative importance of team characteristics, processes, or other 

factors.  

3.2.7 Potential high-level integrated frameworks for HAIT 
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Nevertheless, at present high-level approaches that are suitable candidates to use in the analysis and 

design of Human AI teaming systems do exist.  

Cognitive Systems Engineering (CSE) is an approach aimed at modelling and comprehending complex 

human-machine systems at a cognitive level, specifically focusing on cognitive functions. It involves 

modelling these systems as adaptive entities that respond to feedback inputs to adapt and ensure 

control over processes. Recently, this method has been used by Malakis et al., (2023) to develop a 

framework of six cognitive functions for supporting adaptive human-AI teaming in Air Traffic Control, 

including: steering or goal setting, sensemaking and mental models, common operating picture or 

shared mental models, coordination and transfer of control, managing changes, and operating or 

planning-doing-checking cycle.  

In the Cognitive Control Model (COCOM) three basic concepts are central: competence, control, and 

constructs. Competence represents the set of possible actions or responses that the joint system can 

take to a situation according to the recognised needs and demands. Control characterises the 

orderliness of performance and the way in which competence is applied in relation to the immediate 

and long-term goals, and this is time dependent. Constructs refer to what the system knows or 

assumes about the situation in which the action takes place (Hollnagel, 2000).  

In an extended version of COCOM, ECOM (Extended Control Model), Hollnagel introduces several 

control loops and modifies the model to include different levels of control that, basically, represent a 

scale from low level regulation to planning control (skill-based, rule-based and knowledge-based 

control actions). In characterising ECOM, Hollnagel pictures four stacked control loops. There can be 

interaction between control loops and each control loop can be suspended. Automation can assume 

control over one or more of these loops, and performance can be either open- or closed-loop. The two 

models are depicted in the figure below. 

 

Figure 2: The Cognitive Control Model (COCOM) and Extended Control Model (ECOM) (after Hollnagel, 2000) 

PRODEC (Boy & Morel, 2022) is a recent framework and method for designing human-machine 
teaming, aiming to integrate procedural and declarative methods and focusing on procedural as well 
as problem-solving skills for both humans and machines. PRODEC has been used and validated in the 
MOHICAN project, which focused on the integration of pilots and virtual assistants onboard advanced 
fighter aircraft. This application enabled the development of relevant metrics and criteria related to 
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performance, trust, collaboration, and tangibility, addressing aspects such as complexity, maturity, 
flexibility, stability, and sustainability. 

 

Figure 3: Methodology for performance assessment of a multi-agent system (Boy & Morel, 2022) 

Importantly, it is one of the few frameworks that explicitly address Human-AI teaming and it is useful 

for the analysis, design, and evaluation of a complex sociotechnical system. 

The Joint Control Framework (JCF) can be seen as an extension of the theories based on abstraction 

layers and cognitive functions as the unit of analysis (Lundberg & Johansson, 2021).  

The framework can be used to describe critical episodes of interaction between human operators and 

autonomous, automated, and manual control systems. A JCF analysis considers cognitive control levels 

(functions), temporal aspects of control, and communication and control at the system joints. A JCF 

analysis typically includes process mapping (PM), analysis of Levels of Autonomy in Cognitive Control 
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(LACC), and temporal descriptions of human–machine interaction through the Score notation. Details 

of the Joint Control Framework can be found in (Lundberg & Johansson, 2021). 

 

 

 

Figure 4: The Joint Control Framework (Lundberg & Johansson, 2021) 

 The ‘PPP” Trust Model is almost 20 years old but deserves mention for its impact and longevity. Many 

of the current trust frameworks and measurement schemes incorporate Lee & See’s (2004) idea that 

trust is calibrated through assessment of three aspects of agent behaviour: overt performance, 

underlying process, and the deeper purpose behind the agent. If there is one shortcoming of the PPP 

Model, and others that rely on it, it is that it focuses exclusively on dynamic or calibrated trust. That is, 

the model addresses how trust either develops or decays with the experience of interacting with 

automation.  

The MUFASA project explored air traffic controllers’ use of advanced decision aiding automation and 

put forward a theoretical framework for how to understand operators’ decision to use or not use an 

intelligent aid. This view distinguishes factors both internal and external to the controller that feed 

into the evaluation decision. According to this model a cycle of use – feedback – assessment - trust 

recalibration occurs. This underscores one of the paradoxes of (optional use) intelligent aids: that an 

operator might only come to trust the system after using it but might not choose to use it until they 

trust it. Notice that this model also distinguishes three levels of trust, based on Lee and See’s (2004) 

trust model. According to Lee and See, the only objective indication we get of another agent’s 

performance (whether that agent is an intelligent aid, a robot, or another human) is their observable 

performance. Based on this we all infer underlying process and further, underlying purpose. Lee & 

See’s widely accepted model of trust dimensions has been called the PPP Model.  

In addition to ‘calibrated trust’ (via the PPP model), operator automation strategy is driven by a 

dispositional trust, that is a more general tendency to trust or distrust automation. It is often assumed 

(correctly or not) that dispositional trust toward new advanced technologies decreases with age. 

Finally, the interaction between external contextual factors and internal “performance shaping 
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factors” drive the final decision of whether to rely on automation or not. Time pressure and task 

criticality, for example, can be important drivers of the use decision. This underscores the distinction 

between acceptance of and agreement with automation. If time is tight, the operator might accept the 

use of automation that they would not necessarily agree with. 

 

             

Figure 5: The MUFASA Automation Use Model (MAUM, after Westin & Hilburn, 2011) 

Chen et al. (2018) developed the "situation awareness-based agent transparency" (SAT) model to 

explain human awareness of an agent's current actions and plans, reasoning process, and outcome 

predictions. The original SAT model (Chen et al., 2014) was expanded to incorporate teamwork and 

bidirectional transparency (Chen et al, 2018). The SAT model integrates a few widely accepted 

component models. First is Endsley's three stage model (perception, comprehension, projection) of 

situation awareness (Endsley, 1995). It is also built on Lee & See’s (2004) PPP trust model and Rao & 

Georgeff's (1995) BDI (beliefs, desires, intentions) agent framework. In 2018, four years after their 

original SAT model, Chen and her colleagues acknowledged the increasing role of machine learning 

and 'mixed initiative' teaming and updated the SAT model by incorporating teamwork transparency 

and bidirectional communications aspects between human and agent. 
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Figure 6: The original situation awareness-based agent transparency (SAT) model, adapted from Chen et al. 
(2014). 

 

 

Figure 7: Revised SAT model (Chen et al., 2018) - model of bidirectional, situation awareness-based agent 
transparency in human–agent teams. 

 

WP5 will use one of these methods (or a union of them) to structure the approach to adaptation 

strategy. Once unwanted mental states levels are predicted by the system, the strategy shall select 

a strategy able to avoid issues and maintain good human-ai teaming levels. 

3.2.8 H-AI teaming and performance  
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To date, multiple measures have been identified capable of assessing the performance of a team that 
involves human agents and AI systems such as individual cognitive process measures, teamwork 
measures, and outcome performance measures. The table below lists some relevant measures for the 
evaluation of Human-AI teams. 

 

Figure 8: Human-AI team metrics (National Academies of Sciences, Engineering, and Medicine, 2022) 

Cognitive process measures, including workload and situation awareness, have been extensively 
studied and validated in the context of human-automation interaction (e.g., Endsley and Kaber, 1999). 
These measures remain relevant for assessing the cognitive influence of human-AI teaming on human 
team members (Chen et al., 2018; Mercado et al., 2016).  

Since trust can mediate the degree to which people rely on each other or on a technology such as AI 
(National Academies of Sciences, Engineering, and Medicine, 2022) several rating-scale measures of 
trust have been created, differing in the number and nature of items they include (Hoffman et al., 
2018).  

Due to the relevance of mental models in enhancing team performance, research has recently focused 

on evaluating people's mental models of AI systems to assess their understanding of those systems. 

To achieve this, various approaches have been developed including think-aloud protocols, question 

answering/structured interviews, self-explanation tasks, and prediction tasks that involve individuals 

predicting the actions of an AI system in different situations (refer to Hoffman et al., 2018 for more 

details). Research has also concentrated on explainability, resulting in the development of various 

types of metrics. These include a questionnaire designed to evaluate people's satisfaction with 

explanations, measuring how well they perceive their understanding of the AI system or process being 

explained (Hoffman, 2018), as well as a measure of explanation quality based on Endsley's (1995) 

Situation Awareness Global Assessment Technique, proposed by Sanneman and Shah (2020). In 

addition, teamwork process (e.g., communication, coordination, team situation assessment, team 

trust, and team resilience) measures employed in all-human teams have been modified for assessing 
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teamwork in human-AI teams. While scales for self-assessment of team processes or observer 

assessment of team processes already exist (Entin & Entin, 2001), there is an emerging shift towards 

unobtrusive real or near-real-time measurements of teamwork (Cooke & Gorman, 2009; Gorman, 

Cooke, and Winner, 2006; Huang et al., 2020). Stevens et al. (2014) also proposed physiological 

measures of teamwork, including neural synchrony. Furthermore, another crucial set of measures for 

assessing human-AI teams relates to the objective performance on specific tasks, traditionally 

including the evaluation of quality of performance and completion time. Finally, a significant 

consideration when assessing the outcome performance of human-AI teams also involves evaluating 

the effectiveness of a human-AI team in unforeseen conditions, especially beyond the boundaries of 

the AI system, often in terms of out-of-the-loop recovery time (Endsley, 2017; Onnasch et al., 2014). 

3.2.9 Tasks allocation between AI and Human   

Out-of-the-loop (OOTL) performance issues can arise when humans experience low Situation 
Awareness (SA) while collaborating with automation. As stated in Endsley (2017), Endsley and Kiris 
(1995), and Wickens (2018) this can be attributed to several factors, including: 

1. Challenges related to monitoring, vigilance, and trust. 
2. Insufficient information feedback and limited transparency in automated systems. 
3. Reduced human engagement when operating at higher Levels of Autonomy (LOAs). 

The Level of Autonomy (LOA), also referred to as the degree of automation, is defined in terms of the 
ways portions of any given task can be allocated between the human and the automation or AI system 
(Endsley & Kaber, 1999; Kaber, 2018; Parasuraman et al., 2000; Sheridan et al., 1978). Adaptive AI 
agents add complexity to human-AI teams as human team members must adapt their interactions and 
information sharing to the agent's changing autonomy level. Effects of LOA on human workload, SA, 
and performance have been addressed by existing research (Endsley, 2018). 
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Figure 9: Summary of Research on Effects of LOA and Human SA, Workload and performance. 

However, McNeese et al. (2018) demonstrated that to fulfil a team role and operate in complex 
situations AI agents need to function with a relatively high level of autonomy. 

3.2.10  Relevant regulations 

The aviation and Air Traffic Management (ATM) sectors are witnessing a transformative shift with the 

integration of Artificial Intelligence (AI) technologies. These technologies offer the potential to 

enhance safety, efficiency, and decision-making processes in aviation operations. To ensure the 

responsible and effective use of AI in these critical domains, various aviation authorities and 

organizations have developed comprehensive guidelines and frameworks. Among these, the European 

Union Aviation Safety Agency (EASA) and EUROCONTROL play prominent roles in shaping the 

guidelines for AI adoption in aviation and ATM. Here, we review the guidelines introduced by EASA 

and EUROCONTROL. 

The EASA (European Union Aviation Safety Agency) AI Trustworthiness Guidance is a significant 

initiative aimed at reliability of Artificial Intelligence (AI) systems used in aviation.  

 

The EASA AI Trustworthiness Guidance is designed to establish guidelines and expectations for the 

trustworthy use of AI in aviation. Key points covered by this document include: 

 



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 33 
© –2024– SESAR 3 JU 

  
 

● Trustworthiness: The guidance focuses on ensuring the trustworthiness of AI systems, 
covering aspects such as safety, ethics, fairness, and reliability. 

● Concept of Operations (ConOps): It includes a detailed concept of operations for AI 
applications to support compliance with trustworthiness guidelines. This ConOps helps in 
understanding how AI systems should operate safely and reliably. 

● Fairness: The guidance emphasizes the need to establish mechanisms to ensure fairness in AI-
based systems. This is crucial to prevent biases or discrimination in AI outcomes. 

● Transparency: Transparency in AI operations is a key element. AI developers are encouraged 
to make AI systems transparent, allowing for better understanding and auditing of their 
decisions. 

● Early Visibility: The guidance aims to provide early visibility to applicants regarding EASA's 
expectations concerning AI systems in aviation. 

● Regulatory Milestones: It aligns with EASA's roadmap for AI, marking milestones in the 
development and certification of AI applications in aviation. 

● Webinars: EASA has conducted webinars to communicate its progress and principles related 
to AI trustworthiness. 

The EASA AI Trustworthiness Guidance serves as a framework to ensure that AI technologies are 

integrated into aviation safely, ethically, and with a strong focus on reliability and fairness. It plays a 

pivotal role in shaping the future of AI applications in the European aviation industry. 

The EASA (European Union Aviation Safety Agency) Artificial Intelligence Roadmap represents a 

strategic approach to integrating artificial intelligence (AI) in aviation while maintaining a human-

centric approach. Key points about the EASA Artificial Intelligence Roadmap include: 

● Human-Centric Approach: The roadmap emphasizes a human-centric approach, which 

means that AI in aviation should be designed to assist and augment human activities, 

enhance safety, and optimize operations rather than replace human roles. 

● Safety and Trustworthiness: Safety and trustworthiness are core principles. EASA aims to 
ensure that AI systems deployed in aviation meet rigorous safety standards and can be trusted 
to operate reliably. 

● Risk Management: AI is seen as a key enabler for emerging risk detection and risk classification 
within EASA's safety intelligence and management domain. It can help identify potential safety 
issues early on. 

● Comprehensive Action Plan: The roadmap provides a comprehensive action plan for the EASA 
AI Programme. It includes conceptual guidance deliverables and anticipated rulemaking 
activities, outlining the steps needed for the safe and trustworthy integration of AI in aviation. 

● Focus on Safety and Security: The document underscores the importance of safety and 
security in AI adoption, highlighting EASA's commitment to ensuring that AI technologies don't 
compromise aviation safety or security. 

● Integration of AI: EASA envisions the integration of AI in various aspects of aviation, such as 
air traffic management, maintenance, and safety monitoring. This integration is intended to 
enhance efficiency and overall aviation operations. 

● Version Updates: The roadmap has evolved over time. The current version is the EASA Artificial 
Intelligence Roadmap 2.0, reflecting ongoing efforts to refine and enhance the approach to AI 
in aviation. 
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Overall, EASA's Artificial Intelligence Roadmap outlines a thoughtful and systematic strategy for 
adopting AI technologies in aviation, with a strong emphasis on safety, trustworthiness, and a human-
centric perspective. 

The "EASA Concept Paper: guidance for Level 1 & 2 machine learning applications" is a document 
published by the European Union Aviation Safety Agency (EASA) that provides guidance on the use of 
machine learning applications in aviation, specifically for Level 1 and Level 2 applications. Here's an 
overview: 

● Scope: This concept paper focuses on machine learning applications in aviation, particularly 
those categorized as Level 1 and Level 2. 

● Level Classification: Machine learning applications in aviation are typically categorized into 
different levels based on their criticality and impact on safety. Level 1 applications are 
considered to have a lower impact on safety, while Level 2 applications may have a higher 
impact. 

● Guidance: The concept paper aims to provide guidance on the development, certification, and 
use of machine learning applications at these levels. It may include recommendations, best 
practices, and safety considerations. 

● Safety Assurance: Ensuring the safety of machine learning applications in aviation is a 
paramount concern. The concept paper likely addresses safety assurance processes and 
methodologies specific to these applications. 

● Certification: Machine learning applications used in aviation often need to go through a 
certification process to ensure they meet safety standards. The concept paper may outline 
certification requirements and procedures. 

● Human Augmentation: It's worth noting that Level 1 and Level 2 machine learning applications 
may involve human augmentation, where AI systems assist human operators rather than 
replace them. The concept paper may address this aspect. 

Revision and Refinement: The concept paper is subject to revision and refinement as the field of 
machine learning and aviation evolves. New versions of the paper may be issued to incorporate 
updated guidance and standards. In summary, the EASA Concept Paper provides essential guidance 
for the safe and effective use of machine learning applications in aviation, focusing on Level 1 and Level 
2 applications and emphasizing safety and certification processes. 

The EASA (European Union Aviation Safety Agency) Artificial Intelligence Roadmap 2.0 is a 
comprehensive plan that outlines the Agency's vision for the safe and ethical integration of artificial 
intelligence (AI) in aviation. Here are the key points regarding the AI Roadmap 2.0: 
 

● Focus on Safety and Trustworthiness: The roadmap places a significant emphasis on ensuring 
the safety and trustworthiness of AI applications in aviation. It addresses the critical 
importance of AI systems being reliable and secure. 

● Ethical Considerations: In addition to safety, ethical considerations are a fundamental aspect 
of the roadmap. It aims to ensure that AI in aviation adheres to ethical standards and respects 
human values and rights. 

● Living Document: The EASA AI Roadmap 2.0 is treated as a "living document." This means that 
it is subject to regular updates and revisions to keep pace with the rapidly evolving field of AI 
technology and its applications in aviation. 

● High-Level Objectives: The roadmap sets high-level objectives and actions to guide the 
integration of AI into aviation effectively. These objectives likely encompass areas such as risk 
management, certification, and human-machine collaboration. 
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● Trustworthiness of AI: EASA places a strong emphasis on building trust in AI systems. This 
involves creating robust processes for AI system certification, ensuring transparency, and 
developing mechanisms for risk assessment and management. 

● Annual Amendments: EASA commits to amending the roadmap annually. This reflects the 
dynamic nature of AI technology and the need for continuous adaptation to new 
developments and challenges. 

● Collaboration: Given the complexity of AI in aviation, the roadmap likely encourages 
collaboration between stakeholders, including regulatory bodies, industry players, and AI 
developers, to achieve the stated goals. 

In summary, the EASA AI Roadmap 2.0 is a forward-looking document that guides the safe, ethical, and 
trustworthy integration of artificial intelligence into the aviation sector. It prioritizes safety, 
transparency, and collaboration to ensure that AI enhances aviation operations while maintaining the 
highest standards of reliability and security.  

Finally, also the following regulations will be considered: 

● Commission Regulation (EU) 2015/340 of 20 February 2015 laying down technical 
requirements and administrative procedures relating to air traffic controllers' licences and 
certificates 

● Commission Implementing Regulation (EU) 2017/373 of 1 March 2017 laying down common 
requirements for providers of air traffic management/air navigation services and other air 
traffic management network functions and their oversight 

EUROCONTROL is fully committed to support the acceleration of AI adoption in European aviation, 
and more specifically in air traffic management, through the following actions: 

● The FLY AI initiative, a coordinated action of European aviation/ATM actors to demystify and 

accelerate the uptake of AI (see below); 

● Support to EUROCAE and EASA for the development of AI standards and guidelines for 

aviation/ATM; 

● The development of AI trainings and webinars; 

● The development of AI-based ATM applications notably through research and innovation 

actions together with a suitable data and AI infrastructure framework; 

● The deployment of AI-based ATM applications at Network Level to be used by the whole 

aviation. 

The FLY AI Action Plan is a significant initiative developed by EUROCONTROL in collaboration with its 
partners to promote the use of artificial intelligence (AI) in aviation and air traffic management (ATM). 
This action plan is outlined in the "FLY AI Report" and serves as a roadmap to advance the integration 
of AI technologies in the aviation industry. Key points about the FLY AI Action Plan include: 
 

● Practical Recommendations: The FLY AI Action Plan provides a series of practical 
recommendations aimed at driving AI forward in the aviation sector. These recommendations 
are designed to address the challenges and opportunities associated with AI adoption. 

● Federated AI: One of the notable recommendations in the action plan is the creation of a 
federated AI approach. This approach encourages collaboration among various stakeholders 
in the aviation community to collectively harness the potential of AI. 

● Integration in ATM: The FLY AI Action Plan emphasizes the importance of integrating AI 
technology not only in aviation operations but also in air traffic management (ATM). It outlines 
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measures to better incorporate AI in various segments of ATM to enhance efficiency and 
safety. 

● Future Measures: The action plan goes beyond the current use of AI and outlines future 
measures to advance AI's role in aviation. It envisions a more AI-centric approach in the 
industry's operations and decision-making processes. 

● Industry Impact: The FLY AI Action Plan has the potential to significantly impact the aviation 
industry by making it more efficient, data-driven, and technologically advanced. 

Overall, the FLY AI Action Plan is a forward-looking initiative that seeks to demystify AI and accelerate 
its adoption in aviation and ATM. It reflects the commitment of EUROCONTROL and its partners to 
embrace AI as a transformative technology in the aviation sector. 

3.3 State of the art for mental states prediction 

As anticipated in the previous paragraphs, anticipating operators’ mental states is a fundamental step 
for providing an effective Human-AI teaming. 

3.3.1 States, attentional tasks, and processing phases 

We must distinguish between Mental States, attentional tasks and processing phases. A mental state 
is a mental condition in which a person finds themself because of the state of the mental resources 
that they use to perform a task. Mental resources within the human energetic paradigm can be 
understood as an amount of energy. Within this context mental resources management is presented 
as an adaptative mechanism that addresses the energy demanded to perform tasks (demanded 
resources), the available energy in each moment (available resources) and the energy the human is 
willing to apply to perform the tasks (applied resources). 

Mental states are presented in this section as the different relationship or management of these 
mental resources. 

The mental state that we call Mental Workload is the mental condition that results from the 
relationship between the mental resources that the task demands to be performed optimally and the 
mental resources that the person has available to perform it.  

The mental state that we call Fatigue is the mental condition in which a person finds themself because 
of the number of mental resources they have available at a given moment.  

The mental state we call Stress is the condition in which a person finds themself when they must 
activate mental resources to face a threat.  

An attentional task is a task in which performance depends fundamentally on attentional processes. 
An example of an attentional task is the Vigilance Task, which is a task in which a person must attend 
to a sector of the environment to detect the appearance of a stimulus. A vigilance task is performed, 
for example, by a person who must attend to radar to detect the appearance of an airplane.  

A cognitive function or processing phase is a stage in the mental processing of information in the 
environment. What we know as “Situation Awareness” is a sequence of three stages in information 
processing: the perception of the elements of the environment, the understanding of its current 
situation and the projection of its future situation.  
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Mental states, attentional tasks, and processing phases are conceptually different, although related. 
For example, mental states affect performance on the vigilance task and situation awareness. Similarly, 
the processing phases of situation awareness are involved in the vigilance task. However, it is 
convenient that we know how to distinguish between these three psychological concepts.  

 

 

Figure 10: Mental states, related cognitive functions and tasks 

3.3.2 Mental states 

3.3.2.1 Workload  

The number of mental resources that are applied to perform a task depends on the resources that the 
task demands and the resources that the person has available. The resources that the task demands 
depend fundamentally on its complexity, and the resources available to the person rely on a series of 
factors that determine the level of psychophysiological activation (sleep, circadian factors, etc.).   

We call mental load the discrepancy between the resources demanded by the task and the available 
resources the person has. When the resources required are many, many more than the available 
resources, we speak of "Mental overload", and when the resources demanded are less than those 
available, we speak of "mental underload."  

In Human Factors and Ergonomics, it has been demonstrated for a long time that both mental overload 
and underload harm the performance of tasks and for that reason, in the research and professional 
practice of specialists in Ergonomics and Human Factors Mental Workload is a fundamental factor 
when analysing work. 

What predicts mental workload and should be considered when developing a model? 

● Relationship between taskload and workload 

In the scientific literature on Human Factors and Ergonomics it is also common to talk about 
Taskload. However, it is necessary to distinguish the two terms, Taskload and Workload. 
Taskload are the resources demanded by the task while Workload is the relationship between 
the demanded resources (taskload) and the available resources. Therefore, Taskload is only a 
measure of the demanded resources calculated from the characteristics of the environment. 
In CODA, task prediction models will support the identification of demanded resources. 
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● Cognitive complexity and workload 

The resources demanded by a task depend on the cognitive complexity of that task. It is 
important to keep in mind that complexity does not depend only on the characteristics of the 
task but on how these characteristics are cognitively processed by the person who is executing 
it. Therefore, we might say that when we measure the resources demanded by a task, we are 
measuring the Cognitive complexity of that task as measured by calculating the mental 
processing of the characteristics of the task and the environment in which that task is 
performed. 

● Available resources and workload 

Generally, the resources available at a given time depend on three factors. On the one hand, 

there are individual differences that determine whether a person has more or fewer resources 

available to perform a task. Secondly, depending on the specific moment we measure them, 

we will observe that a person has more or fewer resources available. We know, for example, 

that there are people who have more resources in the morning and less in the afternoon. In 

the same way, on Mondays, after a weekend of rest, you have more resources than at the end 

of an intense work week. Finally, the ingestion of certain substances can modify the amount 

of resources available. For example, after ingesting certain foods or certain medications 

(painkillers), the amount of mental resources can be reduced. These three factors determine 

the level of psychophysiological activation that is responsible for the number of available 

resources that a person has at a given moment.  

However, it is also necessary to consider that there are external factors (for example, a threat 

or danger) that can cause mental states that activate psychophysiological responses, 

increasing the level of available resources, as is the case with what happens with stress. 

In any case, when talking about available resources, it is necessary to say that these resources 

are limited and could be exhausted. We could say that it is not possible for any person to have 

unlimited resources for an unlimited time. For this reason, we must talk about Fatigue, which 

is a mental state defined by the exhaustion of available resources. 

A model for controller workload has been proposed in e-Commet, that takes into account the available 

and demanded mental resources. (de Frutos, et al., 2019). 

As presented in section 3.1.1 Workload, this mental state can be measured using EEG measurements, 

which should correspond to the model developed within CODA regarding mental resources available 

and demanded. 

3.3.2.2 Mental fatigue 

Mental fatigue is conceptualized as the exhaustion of cognitive resources that a person experiences 
while performing a task. At the initiation of a task, a person has limited resources available that will 
have to use to perform it. If these resources are not enough for the execution of the task and they are 
not replaced, the resources will be exhausted, which will produce the phenomenon known as mental 
fatigue. Mental fatigue expresses itself as a subjective feeling of tiredness and as a worsening in the 
performance of the task and, therefore, in the quality and quantity of work performed. 
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Despite the previous statement, the task execution may not be affected due to the provision of extra 
resources from a compensatory mechanism that fosters arousal and alertness, known as the 
"Ascending Reticular Activating System" or ARAS. Together with this enabling mechanism, there is an 
inhibition mechanism that indicates that the metal resources are exhausted and must be replaced. 
This mechanism is the responsible of the subjective feeling of tiredness. Some of these mental 
mechanisms can be measured using the different methods proposed in 3.1.4 Mental fatigue (EEG, 
EOG,…). 

What predicts (affects) mental fatigue and should be considered when developing a model? 

● Time-on task: The time-on task (or shift length) is considered as one of the effective ways to 
prevent fatigue in Air Traffic Control. ANSPs acknowledge this by establishing not only the 
length of shifts but also the number of breaks and their duration that are associated with the 
workload. As example, United Kingdom ATCos Regulations established: no operational duty 
shall exceed a period of two hours without there being taken, during or at the end of that 
period, a break or breaks totalling no less than 30 minutes; — during periods of high traffic 
density, the possibility of having more frequent short breaks (ten minutes) should be provided.  

Hockey (2013) proposed a functional relation between task execution and time-on-task which 
has three phases. At the beginning of the task, there is a decrease or "Habituation" where the 
function exponentially decreases. Next, the body resists fatigue by making an extra effort that 
keeps the performance stable for a while. Finally, it may be that the effort to keep execution 
at an optimal level is excessive and a "disengagement" of the task occurs to devote efforts to 
seeking a new strategy to execute it (seeking new objectives, etc.) 

This can be modelled as a function where the operation method of a person changes to 
compensate for the reduction of mental resources available. 

● Sleep: The circadian factors related to the number of hours that a person has been awake 
influences the available mental resources. Nevertheless, for this project we will assume that 
mental resources are available when tasks are initialized, and the impact of sleep will not be 
modelled. 

 
● Workload: Another important factor on mental fatigue is the intensity of a task or workload. 

The complexity and resources necessary to perform a task produces that the mental fatigue 
appears earlier or later in time. 

As previously presented, the impact of workload can be modelled as the demand of metal 
resources against the available ones. 

● Shiftwork: Studies regarding controllers and mental fatigue indicate that shift work has a clear 
influence. The studies indicate that there are significant differences between day/night shifts, 
time periods, shift start time, before break time, after break time, and shift end time), and 
various work schedules. Again, for this project we will assume that the mental resources are 
available when tasks are initialized, and the impact of shift work will not be modelled. 
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.  

Figure 11: Conceptualisation of a set of factors that influence human performance and fatigue (Balkin, 2011) 

3.3.2.3 Stress 

Unlike fatigue, which is an effect of resource depletion over time, stress is mental state that evolution 
has created to provide resources to the organism increasing their available resources. From this point 
of view, we can define this mechanism as responsible for a general response of the organism to any 
stimulus or threatening situation that we call stressor or stressful factors (Selye, 1956).  

The most accepted contemporary model is the transactional model of Lazarus (Lazarus & Folkman, 
1984) that states that the stress is a result of a transaction between a person and the environment. 
When the environment demands exceed the individual resources available, the level of stress is higher. 
Stress is thus influenced by external objective factors (e.g. noise) and cognitive factors that vary from 
one individual to another (e.g. level of difficulty of a task). Stress can interfere with performance. Stress 
is characterized by a set of body alterations that include among other indicators blood pressure, 
cortisol, skin conductance and heart rate variability among others (see 3.1.2 Stress for further details).    

3.3.3 Cognitive Functions and tasks 

Cognitive functions are cognitive processes responsible for processing information from the 
environment and behaving to modify that environment.  

3.3.3.1 Attentional tasks 

Attention is extracting from the mind, in a clear and vivid way, one item among several possible objects 
appearing simultaneously. Targeting, concentration and consciousness constitute its essence. It 
involves leaving certain things to deal with effectively others. There are several characteristics of 
attentional tasks,  

● Selective attention, where a person selects the prioritization of a task or scanning of the 
environment, 

● Focused attention, where a person keeps attention to a task or sector of the environment 
without distractions, nonrelevant events or competing tasks diverting it. 

● Divided attention, where two tasks are performed simultaneously (switching from one to 
another in seconds). 
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● Maintained attention, where attention must be kept during a large amount of time (vigilance). 

Attentional tasks can be modelled as a management of mental resources that varies with the type of 
attentional task being performed.  

Selective tasks can use the SEEV model, salience, effort, expectancy, value, developed by Wickens et 
al. (2009). The model indicates that our attention is captured by the most salient stimuli, by the 
expectations about where they may appear, by the effort to inhibit the stimuli that distract us, and by 
the value of the information that gives us the stimuli. 

In divided attention the demand of mental resources may overlap in time, increasing the total demand 
when compared to the one needed if each task is performed individually (Wickens et al., 2009). 

Vigilance can be modelled as a task that demands high mental resources that degrades rapidly with 
time. 

3.3.3.2 Situational awareness (cognitive function) 

Situational awareness, SA, can be defined as the ability to perceive the environment, understand it, 
and predict its future. This definition related to information processing has a three steps model 
(Endsley, 1995). This model follows a chain of information processing, from perception, through 
interpretation, to prediction. 

● Level 1: Feel and Perception of the elements in the environment. It is related to the acquisition 
of information and no processing is performed at this stage. A stimulus must be above a 
perceptual threshold to be registered by the individual. Signal detection theory supports the 
modelling of this step. 

● Level 2: Comprehension of the current situation. It is the creation of a mental representation 
of the current situation. This metal representation is created in the working memory by 
combining information that is being perceived with information that is stored in long-term 
memory. Mental abstractions are used to perform this understanding. A model for air traffic 
controller abstraction was proposed by Histon, . 

● Level 3: Prediction of future status. It is the ability to project the future of the elements in the 
environment, this means the prediction of the future state and behaviour of a system. Several 
cognitive projection processes have been proposed in the ATC world. In general, two factors 
have been identified as impacting ATC projection: 

o General cognitive processes. There are two models backed by experimental results. 
The cognitive model of extrapolation of movement where the observer develops a 
mental model of the movement of the object. The cognitive clock model, where the 
observer estimates a visual contact time (TTC) and then uses an internal clock 
mechanism to count up to that TTC. 

o Projection based on ATC knowledge. This process can be improved by training and 
support tools that take into account the ATC relationship with the environment (Degas 
et al., 2022) 
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There is a close relationship between mental workload and SA. In each of the processing phases that 
make up SA, it is necessary to apply mental resources. Therefore, the efficiency of perceiving, 
understanding and projecting will depend on the complexity of the processing in these phases and the 
resources that the person has available. 

3.3.3.3 Human Machine Performance Envelope 

Feeding the cognitive model with the current ATCos mental states, estimated through their 
neurophysiological signals, we will be able to define the Human Machine Performance Envelope 
(HMPE) index. The HMPE index provides information on how well the ATCo and the system are 
cooperating (e.g., how promptly the ATCo is reacting to the different events) and it is able to predict 
the future operator status, hence assessing the Human-AI teaming quality/level. 

3.4 State of the art for operators’ state assessment (BS) 

One crucial enabler for achieving effective human-AI teaming is to provide the AI system with some 

information related to the state of the operator interacting with Digital Assistants. On one side, the 

operator must maintain awareness of the system's status to spot deviations from expected behaviours 

and understand how the system works. On the other side, in systems in which automation is more and 

more suggesting solutions and making decisions, it is essential that the AI-based assistants have some 

information on the teammate they are collaborating with: Do they understand what is happening? Is 

this the right moment to provide information? Do they need some help now?   

The mental states model based on mental resources must correspond to the evidence regarding the 

operator state provided by the physical measures. Neurophysiological measures can be employed to 

assess, even online, the mental states of the operator to enable the system to know their current levels 

of human factors during the execution of the operational task.   

At the design level, this information can also be used to validate predicted cognitive models, 

maximising the effectiveness of the interaction between the human and the machine (see section 3.3).   

The following paragraph will report how neurophysiological measures can be employed to provide 

information regarding the mental and emotional states of the user, in particular regarding Workload, 

Stress, Attention and Mental Fatigue. 

3.4.1 Workload  

Various mental workload definitions have been given during the last decades, showing that workload 
is a complex construct resulting from different interacting cognitive aspects. Mental workload 
measurement quantifies mental activity resulting from performing a task which takes into account the 
available and demanded resources.  

Several empirical investigations have indicated that performance declines at the extremes of the 
workload demand continuum - that is, when the event rate is excessively high or extremely low. For 
these reasons, the mental workload is an essential and central construct in ergonomics and human 
factor research.  
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Moreover, the subjective measures of workload perception could be performed through several 
questionnaires, such as the NASA-TLX. Because of their inherently subjective nature, questionnaires 
do not allow for an objective and reliable measure of the actual cognitive demand in a real 
environment. Therefore, it has already been demonstrated in several contexts that the assessment of 
mental workload by electroencephalography (EEG) provides the sought-after reliable and objective 
measure (Aricò et al., 2016a; Aricò et al., 2016b).  

This evidence showed that the brain electrical activities fundamental for the mental workload 
evaluation are the theta and alpha EEG rhythms on the Pre-Frontal Cortex (PFC) and the Posterior 
Parietal Cortex (PPC) regions. The theta rhythm, especially over the PFC, presents a positive correlation 
- i.e. increases when the mental workload increases (Borghini et al., 2013), while the alpha rhythm, 
especially over the PPC, presents an inverse correlation - i.e. decreases (Gevins et al., 1997). In recent 
studies (Borghini et al., 2015), it has been demonstrated how it was possible to compute, by machine 
learning techniques and specific brain features, an EEG-based Workload Index able to significantly 
discriminate the workload demands during realistic tasks. 

3.4.2 Stress 

Stress is typically defined as a state that occurs when demand outstrips coping strategies (Hobfoll & 
Shirom, 1993). In a realistic context, it is easy to meet stressful factors as high task demand, 
uncontrollability, frustration and time pressure, and such stressors negatively influence performance, 
altering cognitive processes at the base of decision-making, attention and memory. Laboratory studies 
have been largely adopted to study correlates of stress using tasks and protocols that are proven to 
induce stress in a controlled way. According to the literature (Skoluda et al., 2015), one of the most 
effective stressors is exposing a participant to a negative judgment. In fact, when negative feedback is 
provided to the participant, stressful sensations based on frustration will cause time pressure and 
make the task harder. Following this indication, we adopted three different stressors during this 
experimentation:   

● Increasing difficulty for tasks 
● White Coat stressor to elicit social stress 
● Noise as physical stressor. 

Classical biochemical markers for stress are cortisol and epinephrine, which will increase rapidly with 

stress exposure. However, it isn't easy to measure the human cortisol level continuously and without 

interfering with the activities performed by the participant.  

In this sense, a gold standard among the non-invasive measures of stress level is the analysis of skin 

conductance. In fact, when an individual is under mental stress, sweat gland activity is activated, thus 

reflecting in the skin conductance increasing. Since the sweat glands are also controlled by the 

Sympathetic Nervous System (SNS), skin conductance acts as an indicator for sympathetic activation 

due to the stress reaction. In general, it has been widely demonstrated that Skin Conductance, in both 

its two components, the Skin Conductance Level (SCR) and Response (SCR), increases as the stress 

increases.  

Finally, the EEG stress assessment is possible thanks to its high temporal resolution and the possibility 

of direct access to Central Nervous System (CNS) activity (Borghini et al., 2020). From this point of view, 

it has been assessed that in the presence of stressors, there is decreasing alpha power in the prefrontal 
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cortex and an increase in beta in temporal and parietal sites (Choi et al., 2015; Al-Shargie et al., 2016). 

Moreover, a correlation between cortisol and beta EEG band has been found (Seo & Lee, 2010). In 

different contexts, it has been proved that stress condition-induced brain activations asymmetry 

(Murat et al., 2009): it has been demonstrated that the right brain hemisphere is mainly involved in 

cortisol production than the left hemisphere (Lewis et al., 2007).  

Concerning the previous project STRESS (GA699381), in which a comprehensive assessment of the 

stress state from a neurophysiological point of view was provided, the CODA project will employ a 

lighter version of the Stress neurophysiological index by using just a few EEG sensors in the parietal 

part of the head (Sciaraffa et al., 2022). This will have a clear impact on the future use of this technology 

in the ATM field, in which biosignal technology must be minimally invasive to be accepted and 

employed in the operational field (Refer to section 3.2.5 for more details on the STRESS project). 

3.4.3 Vigilance 

The Vigilance concept belongs to the broader attention domain, embracing the aspects related to the 
activation. The task execution with an optimal level of performance is possible because, for the entire 
duration of the task, there is an appropriate level of activation managing resources involved in 
information processing (Parasuraman et al., 1998). Therefore, a physiological vigilance decrement 
during time is associated with a performance decrement. From the neurophysiological point of view, 
it has been already demonstrated that vigilance-related processes involve mainly the right inferior 
frontal brain regions (Di Flumeri et al., 2019; Sebastiani et al., 2020; Sciaraffa et al., 2021).  Using ad-
hoc monotonous tasks to analyse vigilance increased frontal beta activity more in the right than in the 
left hemisphere, suggesting a decrement of vigilance (Molina et al., 2013).  

A neurophysiological measure of the Vigilance index has already been validated during the MINIMA 
project. Anyhow, in the CODA project, a lighter version of this index, by using just frontal EEG 
electrodes located in the right hemisphere, will be used (Sciaraffa et al., 2022). 

3.4.4 Mental fatigue 

Fatigue can be defined as a feeling of tiredness and exhaustion (Al-Shargie, 2016). In general, the 

presentation and symptoms of fatigue are not specific. Physical, physiological, and psychological 

factors all have the potential to create fatigue. There are several physiological measures to monitor 

fatigue, and the most used are EEG, Electrooculography (EOG), Electrocardiography (ECG), 

Photoplethysmography (PPG), and Electrodermal Activity (EDA). Regarding EEG, there is broad 

agreement about the fact that frequency rhythms indicate a level of a fatigued state, even if some 

studies focused on Alpha rhythm (Fujiwara et al., 2018; Di Flumeri et al., 2022), while others 

investigated Theta and Delta (Nguyen et al., 2017; Arefnezhad et al. 2022). EOG monitors eye 

behaviour, and it can be estimated from an EEG signal. This approach reduces the invasiveness of EOG 

monitored by placing dedicated electrodes while keeping the information suitable for evaluating the 

physiological parameters relevant to fatigue. Several studies report increased eyeblink rate (EBR) and 

eyeblink duration (EBD) with fatigue. Contrarily, eyeblink amplitude (EBA) is found to decrease. The 

measures obtained with this approach are the same as the video-based measures. Another source of 

information regarding drivers’ states is represented by the analysis of parameters estimated from the 

autonomic response. In particular, ECG and PPG signals, related to heart activity, and EDA, related to 
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skin sweating, are relatively easy to record, and they can bring relevant information about the fatigued 

state. Heart Rate (HR) is one of the most common features extracted from ECG, and it represents the 

number of heartbeats in a temporal unit. The variation over time of the distance between two 

heartbeats, namely Heart Rate Variability (HRV), has been demonstrated to be correlated with the 

state of drowsiness, and it was found to decrease sleepiness and fatigue compared to alertness 

condition (Fujiwara et al., 2019). From the EDA signal, it is possible to extract two features, the Skin 

Conductance Level (SCL) and the Skin Conductance Response (SCR), that were found to be correlated 

with users’ mental fatigue levels. The research on these parameters is more immature than the 

previous ones. However, there are some findings about a possible relation between skin conductance 

variations and mental fatigue (Bundele et al., 2009).   

A more specific definition for the different mental states and how we are going to measure them within 

the project will be provided in D3.2 Mental states prediction model. 

https://doi.org/10.1016/j.psyneuen.2014.10.002 

 

3.5 State of the art for tasks prediction models 

3.5.1 Introduction 

If neurophysiological assessment can give information on the current state of operators to improve 
the interaction between humans and AI-based systems, the next step would be to be able to predict 
the future mental states to intervene in advance and avoid unwanted situations (e.g. high workload 
peaks) that can immediately impact performance and be hard to recover. The first thing to do to 
achieve this is to anticipate which tasks will need to be executed by the operator in the future.  

Air traffic controllers (ATCos) play a crucial role in maintaining the safe, orderly, and efficient flow of 
air traffic while maintaining effective communication with pilots to ensure compliance with aviation 
regulations. These professionals serve in roles such as tower, en-route, area, approach, oceanic and 
terminal radar Controllers. They have various duties and responsibilities, such as communication, 
traffic management, safety assurance, emergency response, navigational assistance, documentation, 
training, and ongoing professional development. The working environment of an air traffic controller 
is often fast-paced, dynamic, and highly demanding. Controllers must remain focused and attentive to 
the multiple screens, radar displays, and communication systems in their workspace. They work in a 
highly structured and regulated environment, following specific procedures and protocols to ensure 
the safe and efficient movement of aircraft.  

This section describes approaches for measurement, forecasting and prediction of controller tasks in 
this high-risk environment. Additionally, it mentions the challenges and limitations faced by task 
prediction, such as the dynamic nature of air traffic, and the requirements any method aimed for this 
must meet, including data security and privacy and real-time technological infrastructure.  

Air traffic controllers are an integral part of the aviation industry, providing support and supervision 
throughout the flight's journey, from take-off to landing. Their multi-faceted role includes critical 
responsibilities such as air traffic clearance, contact procedures, instrument and missed approaches, 
vectoring, safety warnings, speed adjustments and traffic advisories, all with their associated tasks. All 
these tasks include the meticulous confirmation of pilots' readings and monitoring of related 

https://doi.org/10.1016/j.psyneuen.2014.10.002
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manoeuvres, ensuring that vital instructions on altitude, course and other parameters are followed 
accurately.   

ATCos also perform other tasks, such as maintaining constant vigilance, ready to address any potential 
disruptions or delays affecting the aircraft's trajectory. When pilots request, controllers provide vector 
guidance to avoid observed traffic, thereby enhancing the safety of the airspace. Their commitment to 
tracking and relaying critical traffic information continues until the aircraft lands safely or moves to the 
warning frequency.   

When operating within a high-stakes environment, security and efficiency are paramount, as described 
in (Maynard, 2021). Prediction models are crucial in identifying potential incidents or issues in advance, 
enabling ATCos to take proactive measures to prevent risks, minimize damage, and enhance security. 
Additionally, anticipating future requirements allows ANSPs to allocate resources more efficiently, 
leading to cost reductions. Task prediction further aids in process optimization, error reduction, and 
the assurance of high levels of quality and efficiency. 

3.5.2 Methods for ATCo Task Prediction 

The SoA related to ATCo Task prediction will be analysed below. 

3.5.2.1 Historical Data Analysis 

Analysing historical air traffic patterns is an essential tool for efficient and safe airspace management. 
This process involves the collection and study of data on past flights, including routes, schedules, 
aircraft types, weather conditions and congestion. This enables aviation authorities to forecast future 
traffic demand, optimize routes, plan airport expansions, proactively manage congestion, allocate 
resources efficiently and manage airspace safely.   

A key concept here is traffic complexity, with many attempts to define, measure and predict it from 
historical flight analysis. For instance, the early paper (Chatterji, 2001) presented sixteen complexity 
measures describing air traffic patterns. Other classical and modern attempts to study this problem 
can be found in (Delahaye, 2000), (Isufaj, 2021), etc.  

With a much higher granularity, the paper (D. Karikawa 2013) presents the COMPAS (Cognitive system 
Model for Simulating Projection-based behaviours of Air traffic controllers in dynamic Situations) 
system, which allows automatic ATCo task identification and visualization tools based on cognitive 
system simulation of an ATCos.  

Of particular interest for CODA is the existence of the CRIDA data warehouse, which has stored 
historical data since 2018 on flight plans, radar tracks, sector configurations and ATC activity of ENAIRE. 
To define ATCo activity, a system like COMPAS is in place in the CRIDA data warehouse. This system 
can detect ATCo actions (in the form of events) automatically. This ATC activity, in the form of tasks 
being executed, will be used both as an input to the CODA ATC task prediction system (in the form of 
previous and current tasks being performed) and as the label for the supervised training (for future 
tasks, structured as a plan).  

Some previous projects related to historical data analysis and task/complexity analysis are summarised 
in section 3.3.4 below.   
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In summary, by knowing past traffic trends, authorities can anticipate peak periods and allocate 
resources, ensuring that airports and air traffic control centres can cope with traffic peaks. Historical 
data informs infrastructure decisions, ensuring that airports can accommodate future growth without 
compromising safety. In other words, analysing historical air traffic patterns provides critical insights 
for authorities to anticipate and prepare for impending tasks, ultimately enhancing airspace 
management efficiency and safety benefiting both the aviation industry and passengers. In general, 
this analysis is performed at the strategic level, not in real-time; this idea of complexity may also be 
relevant for real-time task prediction, as we will see. 

3.5.2.2 Real time ATCo Workload Prediction 

Predicting the workload levels of controllers can be considered a pattern recognition problem and is, 
therefore, suitable for data-driven learning algorithms. To this aim, there are several potential 
strategies. The first is to link workload with the traffic situation directly.  

This is the approach followed, for instance, by the paper mentioned in the previous section (Chatterji, 
2001), which linked the complexity measures with the air traffic workload using a neural network. The 
same approach was also followed by (Pang, 2023). In this work, the problem of predicting workload 
based on the spatio-temporal layout of the airspace is considered a dynamically evolving time series 
graph classification task. In this study, it is proposed to introduce multiple historical graphs into the 
model to predict the workload level at the next time stamp. Moreover, the spatiotemporal layout of 
the graph structure varies at each timestamp (i.e., the number of nodes and the connections of the 
graph edges), giving rise to a dynamic graph classification problem. The paper also presents a dynamic 
density model, building a regression model to find linear relationships between traffic complexity 
factors and ATCo workload. However, dynamic density metrics do not consider human cognitive 
capabilities, the primary source of real-world ATCo workload sources.  

Related to the link between complexity and ATCo Load, the paper (Cano, 2007) presents a 
methodology to analyse and react to the expected traffic flows that will take advantage of its more 
predictive ATM network. The paper describes eTLM (Enhanced Traffic Load Monitoring), which aims 
to react to traffic complexity by dynamically adjusting the sector configurations to real traffic 
situations. 

3.5.2.3 Real Time ATCo Tasks Prediction 

An alternative to direct workload derivation from traffic advocated in the CODA project is first to 
identify controllers’ tasks. This has the additional advantage of enabling task distribution in the AI-
human team. Next, we will focus on previous attempts to monitor/predict the controllers’ 
tasks/actions.   

The paper (Pham, 2020) describes a prediction model derived through supervised learning, where the 
target variables are planning controller actions (including altitude, speed and course changes), while 
the inputs have been ADS-B data (aircraft 4D trajectory) and sector information. The system 
automatically derived the sector entry and existing points and identified the needed ATCo 
interventions with reasonable accuracy (99% for vertical manoeuvres, 80-90% for horizontal actions).   

In (Bastas, 2022), a Deep Learning approach is used to model actions related to conflict detection and 
resolution. It covers both the prediction of the time of the intervention and the type of resolution. For 



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 48 
© –2024– SESAR 3 JU 

  
 

us, this approach is critical, as in our problem (as in the one addressed in the paper), it is not only 
essential to know what action will need to be performed but also when.  

In any case, it should be emphasized that the previous literature focuses on actions related to conflict 
resolution. At the same time, our needs are more extensive, as we need to incorporate other types of 
tasks related to vigilance, routine communications, etc. 

3.5.3 Challenges and limitations 

ATCo task prediction has many different potential difficulties and limitations. Some of them will be 
summarised below:  

1. Traffic uncertainty: There are multiple unpredictable elements that, during the different stages 
of flight, can produce unexpected changes in flight plans, even in the short term, such as 
atmospheric conditions derived modifications (especially with turbulent weather), conflict-
induced modifications, onboard emergencies, etc.   

2. ATCo task execution variability: although ATM is heavily regulated, and the types of tasks and 
typical interventions are clearly identified, different ATCos may perform different actions, and 
the order of their execution may change.   

3. Constraints on data security and privacy: To be able to predict ATCo tasks, lots of operational 
data (at least sector definitions, flow definitions, recorded flight plans, recorded tracks, and 
ATCo actions) will need to be accessed to. Some of them may have security/privacy problems, 
which must be solved.  

4. Scalability, the system's capability to handle large data volumes, must be guaranteed to 
maintain effectiveness and accommodate growth. 

 

3.6 State of the art for adaptive systems (NLR + ENAC) 

The term “adaptation” refers to a process where ATC system adapts its behaviour to individual users 

based on information acquired about its user(s) and its environment. In this context, the adaption can 

be based on: 

● The current or predicted task for the controller; 
● The current or predicted traffic situation; or 
● The current or predicted state of the controller. 

The adaptive system monitors the task of the controller, the traffic situation and/or the state of the 

controller in terms of workload, vigilance, fatigue and stress and combines the different sources of 

information (i.e. the human machine performance envelop – HMPE) to make a prediction of the future 

state. 

Currently, there exist only a few examples in which the systems could be referred to as adaptive based 

on the controller’s task or the traffic situation. An example of a simple adaptive system based on the 

task of the controller is the Touch Input Device (TID). The controller uses the TID to make inputs to the 

ATC system based on updated information of the pilot/aircraft, updated flight plan information, or 

instructions given the controller. Depending on the selected option (by selecting a button), the TID 

displays only the relevant sub-choices (by showing buttons with different functionality) to the 
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controller, see Figure 1. Hence, the controller is guided through the system options based on the task 

at hand. 

 

Figure 12: An example of a Touch Input Device (TID) with various buttons. Source: “KDC Merge - concept 
refinement” NLR Contract Report NLR-CR-2016-653. 

3.7 State of the art for explainable systems (ENAC) 

Another needed enabler for the achievement of good Human AI teaming, is to ensure that the AI based 
systems are understood by operators, ensuring a shared system model and the possibility to anticipate 
system behaviour. Explainable AI (XAI) is an important aspect of artificial intelligence that focuses on 
making AI systems more transparent and understandable to humans. There are several rationales for 
the development and adoption of XAI:  

● Trust and Accountability: XAI helps build trust in AI systems. When people can understand 
how AI makes decisions, they are more likely to trust and accept those decisions. It also 
provides a mechanism for holding AI systems accountable for their actions.  

● Bias and Fairness: XAI can help identify and mitigate bias in AI systems. By providing 
transparency into the decision-making process, it becomes easier to detect and rectify 
instances where AI systems exhibit discriminatory behaviour.  

● User Understanding: End-users and domain experts often need to understand how AI systems 
arrive at their conclusions. In fields like medicine or law, AI recommendations may need to be 
justified and comprehensible to professionals who rely on them. 

●  Human-AI Collaboration: In many scenarios, AI systems work alongside humans. Explainable 
AI can facilitate collaboration by providing insights into AI's reasoning, making it easier for 
humans to make informed decisions in partnership with AI. 

● AI model understanding: The "black box" nature of AI can lead to fear and mistrust among the 
public. XAI can help alleviate these concerns by making AI systems more transparent and less 
mysterious.  
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In summary, XAI addresses a wide range of concerns related to trust, ethics, fairness, accountability, 
and practical utility in AI systems. It plays a crucial role in ensuring that AI technologies are deployed 
responsibly and effectively in the aviation domain. To further investigate the past, current, and future 
research perspectives of Explainable AI (XAI), the previous SESAR H2020 ARTIMATION project 
published one state-of-the-art review in the general XAI domain (Islam et al., 2022) and another in the 
specific aeronautical domain (Degas et al., 2022). As a lesson learned, numerous techniques and 
algorithms currently exist and are still under development to enhance the collaboration between 
humans and machines. In the future, as AI is integrated into the complex Air Traffic Management 
System, it should offer algorithm transparency and explanations to all stakeholders, including Air 
Traffic Control (ATC), providing three key pillars:  

1. Descriptive XAI: The system should explain why specific actions are recommended, such as altering 
a flight plan to avoid a potential collision or addressing airspace congestion during take-off or landing. 
This information helps optimize system efficiency and safety.  

2. Predictive XAI: The AI should project the consequences of various actions, allowing stakeholders to 
understand the outcomes of their decisions. For instance, if ATC takes certain actions to prevent a 
collision, it may lead to airport congestion. This helps stakeholders make informed choices based on 
"what if" scenarios.  

3. Prescriptive XAI: In addition to descriptions and predictions, the AI should suggest appropriate 
actions with explanations. These recommendations consider safety as a priority but also account for 
factors like congestion, weather, ATC workload, pilot considerations, cost benefits, and environmental 
impacts. For example, if a "what if" analysis indicates high landing delays for Aircraft A, the prescriptive 
XAI would offer an immediate solution, like changing the flight path instead of altering altitude, to 
resolve the conflict. 

These three levels of explainability have been identified, including description, prediction, and 
prescription. If the machine can effectively provide information at these three levels, it will help 
achieve the XAI goals mentioned earlier. However, while this is a theoretical statement, a significant 
amount of work remains to be done. 

3.8 Conclusions 

This chapter introduced the basic concepts that will be explored by the CODA project and that 
represent the fundamental bricks that will be used to build the CODA solution. 

We started defining the main aim of the solution, which is to improve the teaming between humans 
(ATCos) and AI based systems. We also started presenting the main elements to be considered when 
trying to make this teaming more effective. In Chapter 5, we are going to better detail which of those 
aspects will be taken into consideration by the CODA solution and which are the expectation in terms 
of improvements of ATCos-Digital assistants' collaboration. 

We then moved defining some enablers for the design of the CODA solution: 

● The possibility to assess the mental states of ATCos 

● The possibility to anticipate how those mental states will change in the future 
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● The need for a strategy to manage the adaptation of AI to the current situation (considering 
the current traffic and the current and predicted mental states) 

● The possibility for the AI to make the ATCos aware of what the system is doing and why 
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4 Generic use cases (ENAC) 
The CODA project will focus on improving Human AI teaming for en-route ATCos. Nevertheless, the 
approach applied within the project could easily be adapted to different domains (especially safety 
critical socio-technical systems) and different contexts within the aviation domain. 

This section provides a list of possible use cases of application of the proposed CODA solution in the 
aviation domain in general. In this part of the document, high level use cases will be presented to 
illustrate a set of activities that could be supported by the CODA system, without considering any 
project constraints and focus. In Section 5.3.3, a detailed description of the use case that will be 
investigated in the project will be provided. 

These scenarios are a culmination of our comprehensive knowledge in the aeronautical domain, 
shaped through extensive discussions and brainstorming sessions. Our collaborative efforts involved a 
diverse group of individuals, including six (three ATCos’ students and three ENACs’ engineers) students 
passionate about air traffic control and aeronautical engineering, four (Workshop 1) and six (Workshop 
2) air traffic controllers (ATCos) with expert-level experience, and one engineer with specialized 
knowledge in the field. Additionally, our research team, comprising one postdoctoral fellow and one 
dedicated researcher, played a crucial role in refining these scenarios. The development process was 
further enriched by conducting two interactive workshops, which provided a platform for in-depth 
analysis and creative exchange among participants from various backgrounds. This collective 
approach, leveraging the insights and expertise of both academic and professional perspectives, has 
been instrumental in creating realistic and forward-thinking scenarios for the aeronautical domain. 

To elaborate on these scenarios, we employed an iterative process. We first assessed the capabilities 
of digital assistants and how we believe they can be beneficial for the air traffic control domain. Then 
we defined our efficiency criteria, which are based on mandatory criteria as well as so-called "good to 
have" ones. The mandatory criterion is safety, which must always be upheld. Next are more recent 
and, these days, almost obligatory factors, such as environmental constraints including fuel 
consumption, noise pollution, and environmental impact. Finally, there are the usual criteria, including 
traffic fluidity and optimization. Additionally, we have identified additional criteria to improve 
situational awareness, reduce cognitive workload, decrease user fatigue, and manage environmental 
complexity. While this list is not exhaustive, it represents the key criteria our scenarios must consider. 

In order to generate valuable and interesting scenarios for a broader exploration of the design space, 
we decided to employ specific brainstorming strategies. Rather than solely seeking scenarios where 
automation can enhance air traffic controller activities, we chose to explore how automation and 
digital assistants could provide scenarios that challenge our established criteria. This approach, while 
not the most efficient way to produce realistic usage scenarios, remains interesting for a deeper 
investigation of our design space. This type of exploration is directly inspired by the seminal work of 
César A. Hidalgo in "How Humans Judge Machines" (https://www.judgingmachines.com/). 

https://www.judgingmachines.com/
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Figure 13: Photos taken during the workshop with ATCos in ENAC 

In the upcoming sections, a few detailed scenarios will be presented, each shedding light on the 

multifaceted interactions between humans and the CODA AI system within the context of ATM. The 

first two scenarios present general use cases, providing a comprehensive view of the CODA AI's 

adaptive capabilities and decision-making prowess in the face of adverse weather conditions. These 

narratives underscore the importance of collaborative Human-AI teaming, showcasing how the AI 

seamlessly integrates with human operators to optimize air traffic routes and mitigate potential risks.   

4.1 Scenario 1: Storm Deflection Symphony: Advancing Human-AI 
Collaboration for Dynamic Air Traffic Management 

In the "Storm Deflection Symphony" scenario, the dynamic interplay between human and artificial 
intelligence (AI) in managing air traffic during a severe thunderstorm is explored. This scenario 
demonstrates how cutting-edge AI, utilizing extensive meteorological data, enhances situational 
awareness and supports Air Traffic Controllers (ATC) in decision-making. The AI system's capabilities 
extend to predictive modelling, risk assessment tailored to different aircraft, and the generation of 
multiple optimized route options. Crucially, this scenario underscores the concept of keeping humans 
“in the loop,” ensuring that ATCs maintain control and situational awareness. The AI’s explainable 
interface and natural language processing foster effective human-AI collaboration. Additionally, the 
scenario highlights potential pitfalls of AI, such as reliance on algorithms and ambiguity in complex 
situations. The iterative learning process from pilot feedback and the monitoring of AI's decision-
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making effectiveness illustrate the continuous evolution of AI systems in aviation, striving towards 
improved safety and efficiency. 

Step 1: Initial Situation: Storm on an Air Route 

The adaptable AI system, a cornerstone of the collaborative decision-making for ATC, employs cutting-
edge algorithms to analyse an extensive array of meteorological data. This includes satellite imagery, 
weather radar scans, and ground station reports. By harnessing this wealth of information, the AI 
system not only identifies the presence of an intense thunderstorm but also conducts predictive 
modelling to anticipate its future path and intensity, enhancing the precision of its warnings.  

To further enhance situational awareness, the AI system integrates historical data, considering past 
storm trajectories and their impact on air traffic. This comprehensive analysis enables the AI to provide 
a nuanced understanding of the evolving weather patterns, allowing for more informed decision-
making by the Air Traffic Controller (ATC).  

Step 2: AI Alert and Solution Research 

The advanced AI system's alert mechanism is designed with multi-layered sophistication. In addition 
to notifying the ATC of the imminent danger, the system categorizes the level of severity, providing a 
nuanced assessment of the potential impact on different aircraft types. This granularity ensures that 
the ATC receives a detailed risk profile, allowing for more precise decision-making.  

The AI system goes beyond suggesting alternative routes; it simulates various trajectory adjustments 
based on the unique operational characteristics of each aircraft in the affected airspace. By factoring 
in parameters such as fuel efficiency, aircraft weight, and passenger comfort, the AI presents the ATC 
with not just one but a range of optimized route options, providing flexibility and adaptability in 
decision-making.  

Step 3: Notification of Situation and Solutions to the Controller 

The real-time notification to the ATC is augmented with augmented reality overlays on the control 
screen. This immersive display presents a dynamic visualization of the storm's progression, supported 
by live feeds from relevant sensors. The AI system, recognizing the importance of human intuition, 
incorporates an explainable AI interface, providing the ATC with detailed insights into the decision-
making process of the algorithm.  

To further fortify human-AI collaboration, the notification system is equipped with natural language 
processing capabilities. It translates complex meteorological data into accessible insights, enabling 
effective communication between the AI and the human operator. This linguistic bridge ensures that 
the ATC comprehensively understands the risk factors and alternative routes, fostering a seamless 
collaboration in the decision-making process. This process ensures that the human operator remain 
“in the loop” and maintains situational awareness. This step exemplifies the synergy between human 
expertise and AI-driven recommendations in optimizing decision-making.   

Step 4: Communication with the Pilots 

In the communication phase, the ATC utilizes a comprehensive decision support interface that 
integrates real-time feedback from the pilots. This two-way communication channel allows for a 
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dynamic exchange of information, enabling the pilots to share their observations and experiences in 
navigating the alternative routes suggested by the AI.  

Moreover, the communication platform includes a machine learning component that continuously 
adapts to the evolving situation. It learns from pilot feedback and refines its future recommendations, 
creating a closed-loop system that improves its predictive accuracy over time. This iterative learning 
process ensures that the AI system becomes increasingly attuned to the nuances of real-world flight 
operations, enhancing its effectiveness in providing tailored recommendations.  

Step 5: Monitoring and Adjustments 

The AI system's monitoring capabilities extend beyond the immediate storm event. It utilizes machine 
learning algorithms to analyse the effectiveness of the implemented route adjustments. By tracking 
each aircraft's trajectory in real-time and comparing it to the initially recommended routes, the AI 
system generates performance metrics that contribute to ongoing improvements in its decision-
making processes.  

Furthermore, the monitoring phase includes a predictive element that anticipates the potential for 
route congestion or other operational challenges. This foresight enables the ATC to proactively address 
emerging issues, demonstrating a holistic approach to air traffic management that transcends 
immediate crisis response.  

Step 6: Final Outcomes 

The synergistic collaboration between human controllers and AI-driven systems results in a successful 
rerouting of flights around hazardous storm areas. This not only minimizes risks for passengers and 
crew but also mitigates delays to the greatest extent possible. The integration of AI has effectively 
reduced operator workload, enhanced overall performance, and demonstrated the project's goal of 
predicting and preventing potential problems in real-time.  

These collaborative efforts between human controllers and the AI-driven system culminate in a 
comprehensive analysis of the outcomes. Post-event, the AI system generates a detailed report 
highlighting the efficacy of the implemented strategies. This report includes insights into the deviation 
from the initially predicted storm path, the adherence of pilots to the recommended alternative 
routes, and the overall impact on flight schedules. The outcome analysis becomes a valuable dataset 
for ongoing system refinement and training.  

4.2 Scenario 2: Navigating Turbulence - Enhancing Adaptive 
Automation for Seamless Human-AI Collaboration in Adverse 
Weather Conditions  

In the "Navigating Turbulence" scenario, the integration and challenges of adaptive automation in air 
traffic management (ATM) amidst adverse weather conditions are explored. This case highlights the 
collaboration between human air traffic controllers and an AI system in a high-traffic airspace, 
emphasizing the importance of enhanced situational awareness. A critical moment occurs when a 
technical glitch disrupts the smooth transition of control from AI to human, momentarily leaving the 
controller "out of the loop" and leading to information oversaturation. This incident underlines the 
potential pitfalls of AI, including the risk of over-reliance on automation and the necessity of 



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 56 
© –2024– SESAR 3 JU 

  
 

maintaining human oversight. The AI's subsequent adaptive automation correction and use of 
explainable AI techniques underscore the need for clear human-AI communication and collaboration. 
The scenario concludes by emphasizing the importance of refining these processes to ensure safe and 
efficient ATM, particularly in complex operational scenarios where ambiguity and dynamic decision-
making are prevalent. 

Step 1: Initial Situation: Adverse Weather Conditions 

In a bustling high-traffic airspace, the CODA's adaptable AI system is proactively managing air traffic 
during adverse weather conditions. The AI, driven by adaptive automation principles, dynamically 
allocates tasks in collaboration with human controllers to optimize efficiency, capacity, and safety in 
the Air Traffic Management (ATM) system. Understanding the significance of enhanced situational 
awareness, the AI incorporates real-time data from various sources, including aircraft sensors, to 
create a comprehensive picture of the evolving weather conditions in the airspace. 

Step 2: AI Alert and Adaptive Automation 

The CODA's AI system, equipped with enhanced weather prediction models, detects a rapidly 
intensifying storm along a major airway. Applying adaptive automation principles, the system 
seamlessly takes control of routine monitoring tasks, employing machine learning algorithms to 
evaluate alternative routes based on detailed aircraft capabilities. The AI system not only factors in 
aircraft performance but also considers real-time flight data, such as fuel levels and passenger load, to 
propose optimized trajectories that prioritize both efficiency and safety. 

Step 3: Notification of Situation and Authority Transition to the Controller 

As the AI system initiates the transition of authority back to the human controller, it leverages 
advanced communication interfaces to provide a detailed situational awareness report. A visual 
representation of the storm's progression, combined with haptic feedback, ensures that the ATC is 
fully cognizant of the critical weather conditions. The notification system incorporates context-aware 
messaging, acknowledging the potential for information overload during transitions, and employs 
layered communication strategies to convey the urgency of the situation effectively. 

The ATC receives a notification from the AI presenting the critical weather conditions and its 
recommended course of action. However, there is a complication in the adaptive automation process. 
As the AI attempts to transition authority back to the human controller, a technical glitch occurs, 
disrupting the seamless handover. The ATC is momentarily left unaware of the transition and 
experiences a moment of being “out of the loop”.   

Step 4: Controller's Response and Surfocused Conflict Handling 

During the authority transition glitch, the ATC, now temporarily out of the loop, is momentarily 
unaware of the critical weather updates. Simultaneously, the system presents an emerging conflict in 
a different part of the airspace that requires immediate attention. The ATC, now experiencing a form 
of oversaturation, becomes fixated on resolving the conflict, inadvertently neglecting the storm-
related information.   

In response to the authority transition glitch, the ATC, momentarily out of the loop, relies on enhanced 
visualization tools displaying a comprehensive overview of the airspace. The CODA system, recognizing 
the potential for information oversaturation, integrates AI-driven prioritization algorithms to help the 
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ATC focus on critical issues. The AI also employs natural language processing to provide auditory alerts, 
ensuring the controller remains cognizant of the storm-related information amid the emerging conflict 
in another part of the airspace. 

Step 5: Adaptive Automation Correction and Collaboration 

Recognizing the ATC's momentary lapse in situational awareness through eye-tracking technology, the 
CODA AI system triggers an adaptive automation correction. To facilitate the controller's reintegration, 
the AI temporarily reassumes control over routine tasks, allowing the human operator to regain 
situational awareness and comprehend the unfolding situation. The AI system, leveraging explainable 
AI techniques, communicates the unresolved weather situation, offering detailed insights into its 
decision-making process, and collaborates with the ATC to develop a cohesive strategy for both the 
impending storm and the emerging airspace conflict. 

Step 6: Monitoring and Resolution 

Post-correction, the AI system continues to monitor the evolving weather conditions with heightened 
vigilance. It employs predictive analytics to anticipate potential cascading effects and communicates 
real-time updates to the ATC through an intelligently designed user interface. The controller, now fully 
back in the loop, collaborates seamlessly with the AI to make informed decisions, leveraging the 
enhanced situational awareness provided by the adaptive automation correction. 

Step 7: Final Outcomes 

Despite the momentary glitch, the collaborative efforts between the AI system and the human 
controller successfully averted a potential crisis. The incident underscored the importance of refining 
adaptive automation principles to ensure smooth transitions between AI and human control while 
considering the nuances of situational awareness. The resolution not only showcases the project's 
commitment to maximizing Human-AI teaming but also emphasizes the critical role of enhanced 
awareness in navigating challenges posed by adverse weather conditions. This outcome significantly 
contributes to the strategic objectives of the CODA project, further advancing the efficiency and safety 
of the ATM system in complex operational environments. 

4.3 Scenario 3: Harmony in Complexity - Advanced Human-AI 
Collaboration in Dynamic Air Traffic Management with 
Enhanced Weather Integration 

In "Harmony in Complexity," the scenario navigates the delicate balance of Human-AI collaboration in 
air traffic management, addressing issues like situational awareness and the risk of humans being 'out 
of the loop.' The AI system, "CR Assistant," enhances decision-making amid ambiguous, high-stress 
situations, yet underscores potential AI pitfalls, such as over-reliance and decision-making ambiguity. 
While the AI aids in managing complex weather patterns and airspace congestion, its integration 
highlights the need for continuous human oversight to mitigate trust issues and ensure a harmonious 
blend of human intuition and AI precision in rapidly evolving air traffic environments. 

Initial Situation: First Radar Image  

In the immersive radar environment, a window labelled "AI," known as the "CR Assistant," appears in 
the bottom left corner of the screen, offering two potential modes.  
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Unfolding: 

Time 1: As the situation unfolds, the AI system attuned to subtle cues detects that the air traffic 
controller (ATC), positioned in a bustling control centre, consistently directs their gaze towards 
conflict-ridden airspace, inadvertently neglecting aircraft hovering near the sector boundaries. This 
observation is facilitated by an advanced eye-tracking system, adding an extra layer of sophistication 
to the scenario.  

Time 2: The AI, equipped with real-time weather updates, identifies a rapidly changing weather 
pattern near the sector's entry point. It considers the adverse weather conditions, such as turbulence 
and reduced visibility, contributing to the complexity of the airspace.  

Time 3: A thoughtful suggestion to activate mode 1 is presented to the controller, with the label 
"MODE 1" highlighted in a distinctive colour. This mode, operating as an AI collaborator, focuses on 
managing aircraft approaching the sector entry. These are flights not currently on frequency and 
devoid of conflicts with other aircraft. The intention is to pre-emptively handle these incoming flights, 
alleviating the controller from the initial frequency management tasks.  

Time 4: The controller, now dealing with a complex mix of conflicting airspace and adverse weather 
conditions, clicks on the AI window to seamlessly activate mode 1.  

Time 5: The AI, utilizing its weather analysis capabilities, ensures that aircraft under its purview are 
highlighted on the radar screen in a colour carefully chosen not to disrupt the controller's visualization. 
This feature aids the controller in easily identifying aircraft that the AI is autonomously managing.  

Time 6: After successfully resolving conflicts and navigating through the adverse weather, the ATC can 
regain control of the aircraft by bringing them back on frequency. To streamline the transition, the 
controller clicks on the "MODE 1" window, removing the highlighted labels and seamlessly integrating 
the aircraft back into their direct oversight.  

As part of the comprehensive AI interface, the system incorporates pilot profiles, providing the 
controller with information on the experience levels and aircraft capabilities of the pilots involved. This 
additional detail contributes to a more nuanced decision-making process.  

4.4 Scenario 4: Dynamic Conflict Resolution and AI Delegation in Air 
Traffic Management 

In Scenario 4, "Dynamic Conflict Resolution and AI Delegation in Air Traffic Management," the intricate 
balance of human-AI collaboration is explored against the backdrop of air traffic control. It highlights 
the AI's role in managing complex situations, like conflict resolution and traffic monitoring, while 
keeping the human controller informed and in control. The scenario delves into the potential of AI to 
alleviate workload, yet also touches on the risks of over-reliance, possible ambiguity in AI decisions, 
and the importance of maintaining situational awareness. This situation underscores the need for trust 
and clear delineation of roles to avoid pitfalls where humans might become overly dependent on AI, 
leading to being 'out of the loop' in critical decision-making processes. 

Time 1:  
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The controller is focused on the dashed-line-surrounded area in the centre of their sector, with the 
need to resolve the conflict at 110, the conflict at 120, and monitor the descent of traffic from 110 to 
90 to the east (Figure below). The traffic at 110 to the north requests avoidance of thunderstorm cells 
on the left, which must be authorized. The two aircraft to the west are free from any traffic and can 
be handed off to their respective next sectors. However, the controller does not have the necessary 
availability to perform this action, and the AI takes charge. 

 

Figure 14: Urgency in a complex air traffic situation. The traffic at 110 to the north requests avoidance of 
thunderstorm cells on the left, which must be authorized. 

Time 2: 

The controller plans (or the AI proposes) to resolve the conflict at 110 by descending one of the two 
conflicting aircraft to level 100, which involves a temporary counter-parity to maintain separation 
minima. The conflict at 120 is laterally resolved by sequencing the aircraft coming from the southeast 
behind (the thunderstorm cell is located further south, as indicated). The aircraft from the east is stably 
cruising at level 90 (Figure below). 
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Figure 15: Urgency in a complex air traffic situation. The conflict at 120 is laterally resolved by sequencing the 
aircraft coming from the southeast behind. 

Time 3: 

Just after implementing its resolutions, the controller performs a radar sweep, realizing that six aircraft 
will soon establish contact with him, and he hasn't had the opportunity to integrate them. 
Understanding that these calls would be costly in time, frequency occupancy, and mental resources, 
which he currently lacks due to monitoring conflict evolution, the controller turns to the AI, accepting 
the system's proposal to manage the initial contact for these aircraft. Through the CPDLC system, each 
of these aircraft receives an initial message instructing them to follow their filed route and maintain 
their current altitude. A marker (here an asterisk) then appears on the reduced flight label, indicating 
to the controller that the AI has completed the previously described task (Figure below). Now, it is the 
controller's responsibility, once the conflicts are definitively resolved, to integrate and take control of 
these flights. 

If one of these calling flights is an unknown Visual Flight Rules (VFR) to the system (outlined in the 
image), this resolution becomes complicated to implement. One solution could be to establish a 
separate frequency when the controller decides to delegate a portion of his work to the AI. Upon initial 
contact, an automatic message is sent to the pilot, indicating that they are not in contact with a 
controller and should remain in uncontrolled airspace. 
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Figure 16: Urgency in a complex air traffic situation. Through the CPDLC system, each of these aircraft 
receives an initial message instructing them to follow their filed route and maintain their current altitude. 

In this more operational scenario, the CODA AI system could significantly enhance task resolution by 
incorporating neurophysiological measures from the air traffic controller. By recording and analyzing 
real-time neurophysiological data, such as eye movement patterns, cognitive load, and stress levels, 
the AI system gains a nuanced understanding of the controller's mental state. This invaluable 
information can be utilized to precisely gauge the controller's focus, attention, and potential cognitive 
workload during critical moments of conflict resolution and decision-making. The AI system, through 
advanced algorithms, could dynamically adapt its level of assistance based on the controller's cognitive 
state, providing additional support during periods of increased workload or stress. This personalized 
and adaptive approach ensures optimal collaboration between the air traffic controller and the AI 
system, fostering a symbiotic relationship that maximizes efficiency and safety in air traffic 
management. 

4.5 Scenario 5: AI Enhanced Air Traffic Control: Dynamic 

Adaptation in High-Stress Situations   

In Scenario 5, "High-Level Scenario Based on Dynamic Task Allocation in High Traffic Situations," the 
focus is on managing the complexities of air traffic control during sudden traffic surges due to weather 
diversions. This scenario illustrates the integration of a digital assistant that uses biometric sensors to 
assess ATCos' mental states, addressing challenges like increased workload, communication overload, 
and conflict resolution in high-density airspace. It underscores the importance of maintaining human 
situational awareness and control, despite AI support, to mitigate the risks of over-reliance on 
technology and ensure safety. The scenario highlights potential AI pitfalls, including variability in 
response to unforeseen events and the need for transparent, adaptive decision-making to manage 
stress and cognitive load effectively. 

Operational Context:  
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Amidst a surge in air traffic due to unexpected weather diversions, the operational context involves a 
complex scenario where the airspace experiences an influx of additional flights. The sudden increase 
in traffic necessitates swift and efficient decision-making by Air Traffic Control Officers (ATCos) to 
ensure the safety and orderly flow of aircraft.  

Problematic Part:  

In such a high-traffic situation, several challenges can emerge, posing potential risks to the safety of 
air traffic control operations:  

- Increased Workload: The sudden influx of additional flights and the need for rerouting due to 
adverse weather conditions result in an increased workload for ATCos. They must 
simultaneously monitor multiple aircraft, assess the impact of weather on flight paths, and 
make quick decisions to ensure safe separation.  

- Communication Overload: The spike in traffic may lead to a surge in communication exchanges 
between ATCos, pilots, and other stakeholders. This communication overload can result in 
delays, misunderstandings, and increased cognitive load on ATCos, potentially impacting their 
decision-making abilities.  

- Conflict Resolution Challenges: With a higher density of aircraft in limited airspace, the 
likelihood of conflicts and potential safety hazards increases. ATCos face challenges in 
identifying and resolving conflicts promptly while managing the overall traffic flow.  

- Variable Expertise Levels: The dynamic nature of the situation may lead to variations in the 
expertise levels of ATCos available to handle the increased workload. Some controllers may be 
more experienced in managing high-traffic scenarios, while others may find it challenging, 
leading to disparities in task execution.  

- Fatigue and Stress: The intensified workload and the critical nature of decision-making during 
high-traffic situations can contribute to fatigue and increased stress levels among ATCos. 
Fatigued controllers may experience reduced situational awareness and slower response 
times, posing a risk to safety.  

Addressing the Problems:  

To address these challenges, the digital assistant dynamically assesses the mental states of ATCos, 
considering factors such as workload, stress levels, and expertise. It employs biometric sensors, 
including heart rate monitors and eye-tracking devices, to continuously monitor ATCos' conditions. 
The system then adapts task allocation, prioritizing routine tasks for ATCos experiencing elevated 
stress while redistributing more complex responsibilities to those with lower cognitive loads. This 
dynamic task allocation ensures a balanced workload, preventing burnout, and maintaining optimal 
situational awareness, ultimately enhancing the safety of air traffic control operations.  

Monitoring Air Traffic Control Based on Physiological Measures:  

The integration of a digital assistant equipped with advanced physiological monitoring capabilities 
provides a proactive approach to ensuring the well-being and performance of Air Traffic Control 
Officers (ATCos) during high-traffic situations. Leveraging the fluctuations in physiological measures, 
the digital assistant serves as a valuable tool in real-time monitoring and adaptation. Here's how the 
digital assistant can aid in this regard:  

Continuous Biometric Monitoring:  
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- Heart Rate Monitoring: The digital assistant utilizes wearable heart rate monitors to 
continuously track the heart rates of ATCos. Elevations in heart rate can indicate increased 
stress levels and heightened cognitive load.  

- Eye-Tracking Technology: By employing eye-tracking devices, the digital assistant monitors 
gaze patterns and blink rates. Prolonged staring or irregular blinking may signify fatigue or 
concentration issues, providing insights into ATCos' mental states.  

Real-time Cognitive Load Assessment:  

- EEG Devices for Brainwave Patterns: Wearable electroencephalogram (EEG) devices capture 
brainwave patterns, offering a direct insight into cognitive load variations. High-frequency 
brainwave patterns may indicate increased mental activity, while low-frequency patterns may 
suggest fatigue.  

- Neurofeedback Systems: The digital assistant incorporates neurofeedback systems, providing 
real-time feedback to ATCos about their cognitive states. This instant awareness empowers 
controllers to self-regulate and manage workload more effectively.  

Adaptive Task Allocation:  

- Data Fusion and Decision Support: The digital assistant integrates physiological data with real-
time operational data, creating a comprehensive picture of ATCos' mental and operational 
states. This data fusion enables the system to make informed decisions about task allocation.  

- Machine Learning Algorithms: Employing machine learning algorithms, the digital assistant 
learns patterns of physiological responses during various operational scenarios. Over time, it 
becomes adept at predicting when ATCos may experience heightened stress or fatigue.  

Dynamic Adaptation to Physiological Fluctuations:  

- Prioritizing Tasks Based on Physiological State: When fluctuations in physiological measures 
are detected, the digital assistant dynamically adjusts task priorities. Routine tasks may be 
assigned to ATCos experiencing elevated stress, while more complex responsibilities may be 
redistributed to those with lower cognitive loads.  

- Real-time Support and Alerts: In response to concerning physiological fluctuations, the digital 
assistant provides real-time support and alerts. It may suggest brief breaks, mindfulness 
exercises, or even redistributing tasks among the team to alleviate stress and maintain optimal 
performance.  

Transparent Communication and Feedback:  

- Explanation of Adaptive Decisions: The digital assistant transparently communicates the 
rationale behind adaptive decisions based on physiological measures. This not only fosters 
trust among ATCos but also ensures a clear understanding of why specific adjustments are 
made.  

- Individualized Feedback and Support: Providing individualized feedback, the digital assistant 
offers insights into the impact of physiological fluctuations on performance. It may 
recommend personalized strategies for stress management or workload distribution, tailored 
to each ATCo.  

By actively monitoring the physiological measures of ATCos and leveraging this information for 
dynamic adaptation, the digital assistant becomes a valuable ally in maintaining optimal air traffic 
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control operations. This approach not only enhances safety by preventing potential cognitive fatigue 
but also contributes to the overall well-being and resilience of the ATCo team during challenging 
operational scenarios.  

Collaborative Decision-Making in Unforeseen Events:  

The digital assistant integrates sentiment analysis and workload prediction algorithms, complemented 
by electroencephalogram (EEG) devices, to assess and anticipate ATCos' mental states.  

In response to an unplanned event, such as an aircraft experiencing a medical emergency, the digital 
assistant assesses ATCos' mental states. EEG devices measure brainwave patterns, providing insights 
into cognitive load. The system initiates a collaborative decision-making session, allocating tasks based 
on workload predictions, individual stress levels, and neurophysiological signals. This ensures that 
ATCos can collectively address the emergency while adapting to their varying mental states.  

Real-time Conflict Resolution and Traffic Flow Optimization:  

The digital assistant incorporates neurofeedback systems to measure ATCos' mental states during 
conflict resolution, enhancing real-time adaptability.  

As the system identifies a potential conflict between two aircraft, it assesses ATCos' mental states using 
neurofeedback systems. The real-time feedback from neurophysiological signals, such as brainwave 
patterns, aids in understanding cognitive load. The digital assistant dynamically adjusts task allocation, 
providing additional support to the ATCo handling multiple conflicts. It transparently communicates 
this decision, explaining that the adaptation is based on workload considerations and the cognitive 
load of the ATCos involved.  

Adaptive Response to Unplanned Air Traffic Events:  

The digital assistant integrates wearable EEG devices and fatigue prediction algorithms to assess 
ATCos' mental states during unplanned events.  

In the event of an unscheduled landing due to an aircraft experiencing technical issues, the digital 
assistant assesses ATCos' mental states. Wearable EEG devices provide insights into cognitive load and 
fatigue levels. The system dynamically adapts, reallocating tasks to minimize the impact on stressed 
ATCos. Additionally, it adjusts communication strategies, providing clear and concise information to 
maintain situational awareness. The digital assistant transparently communicates the adaptive 
strategy, ensuring all ATCos are aware of the adjustments made.  

Enhanced Communication and Information Sharing:  

The digital assistant employs natural language processing and fatigue prediction algorithms, 
supplemented by eye-tracking technology, to assess ATCos' mental states during communication-
intensive scenarios.  

During a prolonged communication session involving coordination with multiple sectors, the digital 
assistant assesses ATCos' mental states. Eye-tracking technology monitors attention levels, while 
fatigue prediction algorithms anticipate potential cognitive fatigue. The system dynamically adjusts 
the pace of information sharing and communication intervals, optimizing the timing of critical updates. 
It transparently informs the team about the adaptive communication strategy, ensuring that 
information is conveyed effectively while considering the cognitive load of the ATCos involved.  
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By incorporating tools to measure neurophysiological signals, such as EEG devices, heart rate monitors, 
and eye-tracking technology, the scenarios are enhanced with a deeper understanding of ATCos' 
mental states. These tools provide valuable insights for the digital assistant to adapt dynamically, 
ensuring a supportive and efficient operational environment. 

Together, these different scenarios offer a comprehensive exploration of the CODA AI system, 
showcasing its adaptability, decision-making precision, and collaborative potential in optimizing both 
the strategic and operational facets of ATM systems. Through these narratives, the aim is to provide a 
nuanced understanding of how Human-AI teaming contributes to enhanced performance, risk 
mitigation, and the overarching objectives of the CODA project. 

4.6 User-Case conclusions 

The diverse range of scenarios outlined in the user-case section of the CODA project underscores the 
multifaceted potential of AI and digital assistant technologies in transforming ATM. These scenarios, 
though illustrative, offer a glimpse into the breadth of applications and the depth of impact that such 
technologies can have in the aviation domain.  

In the user-case scenarios for the CODA project, key points emerge that collectively illustrate the 
transformative potential of AI and digital assistants in ATM. These scenarios underscore enhanced 
situational awareness, where CODA's advanced capabilities provide ATCos with critical insights in 
complex airspace, ensuring better decision-making and safety. Emphasizing environmental efficiency, 
the scenarios explore route optimization for reduced fuel consumption and noise pollution, aligning 
with today’s environmental concerns. A significant focus is placed on cognitive workload management, 
highlighting how AI can alleviate the burden on ATCos, leading to increased efficiency and reduced 
fatigue. Lastly, the scenarios address airspace capacity enhancement and noise abatement strategies, 
demonstrating CODA's role in improving airspace utilization while being mindful of community impact. 
These key points collectively highlight the breadth of CODA’s application in revolutionizing ATM, 
balancing technological advancement with human-centric considerations. 

These scenarios closely align with the core objectives of the CODA project, particularly in highlighting 
the critical roles of AI and digital assistants. CODA's emphasis is on ensuring a seamless alignment 
between the contextually captured states and the prevailing aeronautical situations. This alignment 
aims to bridge the gap between the digital capabilities of AI and the real-world dynamics of ATM, all 
while keeping the human user at the centre of the decision-making process. 
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5 Operational service and environment 

definition (OSED) 

This chapter describes the SESAR solution under the scope of the document, detailing the operational 

environment and operational concept aspects. 

5.1 SESAR Solution 0447 - Adaptive System based on Controller 
Status for Enhanced Human-AI Teaming: a summary 

The CODA solution falls under the ATM OPERATIONAL SOLUTION category, as it provides an 
operational improvement (OI) with a supporting Enabler (i.e. the CODA system) able to support current 
and future ATM solutions. 

The objective of the CODA solution is to increase the efficiency, capacity, and safety of ATM 

maximising Human-AI teaming.  

To do so, the project will develop a system (up to TRL2) in which tasks are performed collaboratively 

by hybrid human-machine teams and dynamically allocated through adaptive automation principles. 

The system predicts relevant mental states of en-route air traffic controllers so to anticipate possible 

problems and trigger specific actions (such as the activation of Digital Assistants), as briefly 

summarised in the following image: 

 

Figure 17: Brief summary of the CODA concept (blue elements are the ones addressed by the project) 

Specifically, the system is based on several components: 

● Current mental state assessment: assess the current status of the operator (e.g. level of 
workload, stress and other relevant human factors) [OBJ3]3.  

● Tasks prediction: A first one will use current traffic data to foresee the future tasks that the 
operator will need to perform in the future [OBJ1]4.  

 
● 3 The details of how this module works and how it will interact with the prediction one will be 

provided in D4.1 Indexes description and integration with the prediction models. 

● 4 The details of how this module works will be provided in D3.1 ATCO Tasks prediction model. 
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● Mental states prediction: calculate the impact of predicted tasks in terms of cognitive 

complexity [OBJ2].  

● System adaptation: With the information gathered by the previous models, the system will 
predict the future mental state of the operator and will act accordingly [OBJ4]5.  

The following image provides a simplified overview of the CODA solution. 

 

 
Figure 18: SESAR Solution 0447 - Adaptive System based on Controller Status for Enhanced Human-AI 

Teaming:      concept 

 

To provide an example of how the system could work, let’s imagine that an ATCo is managing a 
complex traffic situation, experiencing a medium level of workload. The system is aware of this (thanks 
to the neurophysiological assessment) and predicts that the additional upcoming tasks the ATCo will 
need to take care of will increase their workload, exceeding the maximum an operator can handle. To 
avoid this future problem, the system decides how to act, following an adaptation strategy: it may 
decide to increment the level of automation, enabling additional AI based tools, or to request a sector 
splitting, or even contact network management to ask for some regulations to be issued.  

 
● 5 The details of how this module works will be provided in D5.1 Adaptation and Human AI 

interaction strategy and teaming playbook 
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Regarding the wider expected impact of the project, CODA results are expected to make a difference 
in terms of impact, beyond the immediate scope and duration of the project. In particular, the CODA 
project will produce the preliminary conceptual design of the ATCo Digital Assistance Tool, providing 
understanding of how the tool’s basic principles will be used (Please refer to section 1.2 Methodology) 

In the long term, the CODA project will have an impact in many of the research and innovation needs 
addressed in the SRIA to achieve the Digital European Sky programme. In detail, the CODA project 
will have an impact on: 

- the Connected and Automated ATM.  The Digital Assistance Tool will boost the level of 
automation in the ATM. This will contribute to achieving the European ATM Master Plan vision 
to reach at least level 2 (task execution support) for all ATC tasks and up to level 4 (high 
automation) for some of the tasks. 

- Capacity-on-demand and dynamic airspace. The CODA system will allow a dynamic 
reconfiguration of resources (HUMAN-AI TEAMING) and new capacity-on-demand (ADAPTIVE 
AUTOMATION FOR TASK ALLOCATION AND EXECUTION) services to maintain safe, resilient, 
smooth and efficient air transport operations while allowing for the optimisation of trajectories, 
even at busy periods. 

- Artificial intelligence (AI) for aviation. The predictivity and prescriptibility of the system will 
optimise the ability to identify potentially problematic solutions and to correct them before the 
event occurs. 

The CODA Project demonstrates a significant contribution to the realisation of the Digital European 
Sky vision (SESAR Phase D) in relation to achieving: 

● fully scalable services supported by a digital eco-system, providing an enabler for adaptable 
systems able to effectively respond and anticipate disruptions and problematic situations   

● high and full automation (level 4/5), providing a concrete example of a system adapting the 
level of automation to the contextual condition and the states of operators, ensuring the best 
possible level of automation in the different conditions 
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SESAR 
solution ID 

SESAR 
solution title 

SESAR solution definition Justification 

SESAR 

Solution 

0447      

Adaptive 

System based 

on Controller 

Status to 

enhance 

Human-AI 

Teaming 

The Solution enables a better 

integration of any Al-based tools 

supporting the work of En-Route 

Air Traffic Controllers (but could 

easily be applied to other 

controllers' roles), improving 

teaming, wellbeing, safety and 

performance, and keeping the 

mental state of the controller 

within safe boundaries. 

More specifically, it enhances 

adaptability in highly automated 

systems by managing the 

interaction of AI tools and other 

support systems with Air Traffic 

Controllers based on their current 

and anticipated mental states. 

The system includes: 

● A tasks prediction module 

● A mental states assessment 

module 

● A mental states prediction 

module 

● An adaptive automation 

strategy module 

The expected benefits for the 

main targeted stakeholder 

(ANSPs) will be to: 

● Improve operations 

predictability 

● Improve/Maintain level 

of safety in ATM 

● Increase airspace 

capacity 

● Increase operational 

efficiency 

● Reduce costs due to 

inefficiency and 

unexpected 

complex/unsafe 

situations. 

Table 3: SESAR Solution 0447 - Adaptive System based on Controller Status for Enhanced Human-AI Teaming:      
scope 

5.1.1 Deviations with respect to the SESAR solution definition 

No deviation with respect to the SESAR solution definition were identified.  

5.2 Detailed operational environment 

5.2.1 Operational characteristics 

Although the CODA system is potentially applicable to different operational context, in the frame of 
the ongoing research activities the focus will be on the current en-route commercial air traffic (CAT) 
in the European airspace. That is with a focus on: 

● Class A airspace where the ATCo provides 5NM or 1000ft separation 
● Commercial air traffic (CAT) operating under IFR  
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● Higher altitudes: between FL245 – FL410 

It is expected that the adaptive ATC system will be integrated in future complex environment in which 
the controllers’ activity is supported by high level of automation. 

 

5.2.2 Roles and responsibilities 

The operational environment is focussed on air traffic control services for en route traffic. Air traffic 
control services are provided by one or more executive controllers supported by planners (assistant 
controller) within a given sector within an airspace.  
Air traffic control services has several interfaces that should be considered too, notably air traffic flow 
management and airspace management, as illustrated in Figure below. 
 

 
Figure 19: Operational environment 

 
Air Traffic Flow Management (ATFM) aims to ensure optimal traffic flow when demand is expected to 
exceed the available capacity of the ATC system. It comprises activities related to traffic organization 
and handling in a way that is safe, orderly, expeditious and kept within the capacity. ATC capacity 
reflects the ability of the system to provide service and is expressed in numbers of aircraft entering a 
specified portion of the airspace in a given period of time. Depending on the traffic demand, 
restrictions can be given or the sectorisation can be adjusted. ATFM is performed by the Flow Manager 
Position (FMP) in coordination with the Supervisor. 
En route, air traffic control is provided in the airspace of a given flight information region (FIR). 
Depending on the traffic load, the airspace is split into several sectors which can be merged again when 
the traffic load permits. This process is called sectorisation and is performed by the supervisor. 
Increased capacity demand is generally met by provision of more sectors. Usually, the demand is 
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calculated as short-term operational predictions based on planned flights. Opening/closing of sectors 
should closely monitor the demand to achieve efficient use of all available resources. 
Within this operational environment, the functions of supervisor, flow manager position, executive 
controller and planners are included in the scope.  
European functions managing the pan-European airspace, such as the Network Manager, are out of 
scope.  
The CODA solution will be tested in the project as an additional support for the executive controller, 
without changing their roles. 

 

5.2.3 CNS/ATS description 

The air traffic controller is supported by an air traffic control system (ATCS) via an operational display, 
i.e. the Human-Machine Interface (HMI). The ATCS consists of several subsystems for (radar-based) 
surveillance, (R/T-based) communication and (flight) data processing.  

In this section only surveillance and communication are described in more detail. The current available 
systems for navigation will be available and will not be affected because of the CODA project. 

Surveillance 

Primary and secondary radars are used to enhance a controller's situational awareness within the 
assigned airspace via an operational display. All types of aircraft send back primary echoes to 
controllers' screens and transponder-equipped aircraft reply to secondary radar interrogations by 
providing an ID (Mode A), an altitude (Mode C) and/or a unique callsign (Mode S). Mode S provides a 
data downlink of flight parameters via secondary surveillance radars allowing radar processing systems 
and therefore controllers to see various data on a flight, including airframe unique id, indicated 
airspeed and flight director selected level, amongst others. 

Based on these inputs with added data from other radar sources, the air traffic situation is displayed. 
By correlating the radar information with the electronic flight plans additional information is available 
on the operational display.  

For en route traffic, air traffic control services are provided from Area Control Centers (ACCs). 
Currently, the level of automation varies per ACC. Ranging from basic systems, consisting of a 
communication system only, to advanced systems where the functionality is complemented by various 
tools. Examples of these tools are: 

● STCA (Short Term Conflict Alert: a tool that checks possible conflicting trajectories and alerts 
the controller. The STCA is activated about 2 minutes (or even less in approach context) prior 
to the loss of separation. The algorithms used may also provide in some systems a possible 
vectoring solution, that is, the way to turn or descend/climb the aircraft to avoid infringing the 
minimum safety distance or altitude clearance. 

● Medium Term Conflict Detection (MTCD) providing conflict advisories up to 30 minutes in 
advance complemented by a suite of assistance tools that assist in evaluating resolution 
options and pilot requests. Today several MTCD tools are available in Europe, such as iFACTS 
(NATS), ERATO (DSNA), VAFORIT (DFS). The SESAR Programme is planning to launch new MTCD 
concepts. 
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All these tools are aimed at providing alerts (and in some cases proposes a resolution) to the controller 
based on the current situation and a predicted future situation.  

 

Communication 

Generally, communication is performed via R/T. A different type of communication is the CPDLC. The 
Controller and Pilot Data Link Communication (CPDLC) is a digital data link between the air traffic 
control system and the aircraft. Using this link CPDLC allows digital messages to be sent between 
controllers and pilots, avoiding the need to use radiotelephony, reducing the controllers’ workload as 
a large fraction of all air-to-ground communications involves the hand-off of a flight from one sector 
to another, allowing controllers to focus on more complex and challenging tasks. 

5.2.4 Applicable standards and regulations 

In principle all standards and regulations that apply within the European airspace are applicable. The 
regulation governing ATM/ANS is particularly relevant, i.e. Commission Implementing Regulation (EU) 
2017/373 of 1 March 2017 laying down common requirements for providers of air traffic 
management/air navigation services and other air traffic management network functions and their 
oversight. 

Additionally, there are requirements involving  

● Ground Equipment: Commission Delegated Regulation (EU) 2023/1768 of 14 July 2023 and 
Commission Implementing Regulation (EU) 2023/1769 of 12 September 2023 

● Air Traffic Controllers: Commission Regulation (EU) 2015/340 of 20 February 2015 — Air Traffic 
Controllers' Licences and Certificates  

● Airspace Usage:  
o Commission Regulation (EU) No 1332/2011 of 16 September 2011 — Airspace Usage 

Requirements and Operating Procedures for Airborne Collision Avoidance (ACAS II) 
o Commission Implementing Regulation (EU) 2018/1048 of 18 July 2018 — Airspace 

Usage Requirements and Operating Procedures concerning Performance-Based 
Navigation (PBN) 

o Commission Implementing Regulation (EU) 2023/1770 of 12 September 2023 — 
Provisions on aircraft equipment required for the use of the Single European Sky 
airspace and operating rules related to the use of the Single European Sky airspace 
(AUR.IR) 

● Standardised European Rules of the Air: Commission Implementing Regulation (EU) No 
923/2012 of 26 September 2012 — SERA  

5.3 Detailed operating method 

In principle, the functions within the operating environment are not changed in the new SESAR 

operating environment (due to the adaptive systems). Only the systems providing the support for the 

functions and roles are modified. They are providing support in an adaptive manner.  
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5.3.1 Detailed operating method 

N/A 
 

5.3.2 New SESAR operating method 

N/A 

 

5.3.3 CODA Use case 

The project will detail the support to en-route controllers use case. 

This specific use case consider an executive ATCo, working in a high traffic environment. 

The EXE ATCo will be supported by the CODA system. 

They will wear monitoring devices so to assess the current level of 4 mental states (workload, fatigue, 

stress, attention). 

The system will predict the future mental states according to the incoming traffic and will act in case 

one or more of the assessed mental states go out of a safe range. 

The system will act activating/de-activating specific high automation support or AI Digital assistants 

support, and/or communicating the status to other roles (e.g. Supervisor/Flow manager), still to be 

identified (see D6.1 ERP for the description of the automations and AI tools that will be simulated). 

The project will detail this specific use case in several scenarios that will be used for the validation of 
the solution. Those scenarios will be focused on changing complexity levels (from medium to very high) 
able to trigger different mental states levels and do system adaptation to prevent unsafe situations 
(see D6.1 ERP). 

5.3.4 Differences between new and previous operating methods 

Activities (in the SESAR 
architecture) that are 
impacted by the SESAR 
solution 

Current operating method New operating method 

Executive ATCo activities Supporting tools are selected 
and use by ATCo 

Supporting tools and external aid 
is automatically triggered when 
unsafe mental states situations 
are predicted. 

Table 4: differences between the new and the previous operating method 

      



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 74 
© –2024– SESAR 3 JU 

  
 

 

5.3.5 Initial feedback on the CODA concept  

The first Advisory Board workshop was conducted on December 15, 2023, with 22 participants, with 
the contribution of eight External Advisory board members representing regulators, ATCO 
representative associations, other research projects representative and domain related press 
representative. During this workshop, the basic characteristics of the CODA concept have been 
presented. We report here some of the feedback gathered (see D6.3 ERR for full details and the results 
of the workshop). 

 
 

Figure 20: Initial high level feedback on the CODA concept on the scale of 1 to 5 

In general, as demonstrated in Figure 20, the AB members agreed with the feasibility and expected 
benefits of the CODA system. Many of them expressed to be      in favour of a system that provides 
adaptation depending on ATCos conditions. Furthermore,      most of them consider it as needed to 
support future complex hybrid AI-Human scenarios. 

6 Key assumptions 
In the context of CODA, some assumptions have been made in terms of enablers for an effective use 
of the proposed system in future operations.   

● Operators (i.e. enroute controllers) can be monitored in real time: the project proposes a set 
of tools that can be used for assessing in real time the mental states of controllers. The actual 
use of similar tools is impacted by several considerations that are not technical ones. The use 
of alternatives monitoring tools can influence the acceptability of such an assessment, as well 
as the data management process and privacy management of the acquired data. 

● AI based Digital assistants and high-level automation tools will be developed and 
implemented in the ATM domain: CODA makes ATM systems adaptable to specific situations 
(e.g. high peak workload), also by acting on the behaviour of supporting tools. The more those 
tools are available, the more CODA will prove its effectiveness in preventing unwanted 
situations. 
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Appendix A  
Stakeholder identification and benefit impact mechanisms 
(BIM) 

A.1 Stakeholders' identification and expectations 

The project identified a list of stakeholders impacted by the project, listed in the following table.  

The next paragraph will present the BIM related to the ATM related ones. 

 

Stakeholder Involvement Why it matters to the 
stakeholder 

Scientific community 
(Universities, research 
institutions, EU projects, 
educational institutions) 

To disseminate the project 
objectives, intermediate and 
results of the project, 
potentially finding synergies 
with other 
projects/approaches focused 
on the implementation of 
higher levels of automation and 
AI within ATM through 
scientific dissemination, 
workshops, etc. 

To raise mutual awareness of 
approaches results potentially 
resulting in further 
collaborations 

To make students and 
academia aware of advanced AI 
solutions in ATM, helping to 
entice them to this knowledge 
area. 

Institutional bodies (EU and 
EC, European Joint 
Undertakings, EASA, Policy 
makers, Regulatory and safety 
agencies, Standard making 
bodies, National bodies, 
Certification bodies). 

To provide an actionable 
roadmap for the progressive 
and controlled deployment of 
AI solutions through direct links 
though the Advisory Board and 
dissemination events 

To help facilitate the 
progressive and safe 
introduction of AI solutions in 
ATM in a controlled way, by 
implementing actual examples 
of potential uses to help 
confidence to be built on the 
users and regulators and 
helping define future 
safety/security/privacy 
constraints for its 
implementation. 

Industry (ATM automation 
systems providers). 

To make industry aware of the 
potential and results of our 
project for final 
implementation using direct 
links with industries and 
dissemination events 

To provide a clear path for the 
higher TRLs implementation of 
the solution, and potentially 
opening the way to more AI 
based solutions 
implementation. 

General public, media. To raise awareness on CODA 
objectives and results in the 
general public 

To make clear the value of the 
project and the benefits for 



 
D2.2 - CODA - OPERATIONAL SERVICES AND ENVIRONMENT DESCRIPTION (OSED) 
Edition 00.03.00 

 

  

 

 
Page | 85 
© –2024– SESAR 3 JU 

  
 

citizens, especially in terms of 
safety and economy impacts. 

Users (ATCos, ANSPs, NM). To promote solution benefits 
and potential applications to 
the ANSPs and Network 
Management stakeholders at 
large using NM fora and 
communication channels, and 
direct relations with some 
ANSPs and ATCo organizations 
(e.g., ENAIRE, IFATCA). 

To start the journey to finally 
deploy in future a CODA based 
solution, with the help of the 
industry to reach higher levels 
of TRL, in actual operations 

To inform Decision Makers and 
incentivise operational 
stakeholders to adopt CODA 
solution (see BIM for additional 
details) 

Table 5: stakeholders' expectations and involvement 

A.2 Benefits impact mechanisms (BIM) 

Preamble: CODA is expected to enable systems adaptability to users’ status. The following paragraphs 
will summarise related expected benefits. It must be noted that the magnitude of the impact is highly 
influenced by the effectiveness and efficiency of the different automations and AI assistants that will 
be triggered by the system. We focus here on the two main changes introduced by the CODA system: 

● Adaptability of ATM En-route system for executive controller 
o Adaptability of task allocation between operator and machine (automation, AI) 
o Adaptability of the interface used by the operator 

Two main impacted stakeholders have been identified: 

● Air Navigation Services Providers (ANSPs) 
● Airspace Users (AU) 

Hereafter is a high-level description of the Benefit and Impact Mechanism (BIM) for each impacted 
Stakeholder. These benefit mechanisms might also be refined in the context of the different Validation 
Exercises related to the Solution.  

Benefit and Impact Mechanism consists of the measurement of different KPIs that will be calculated 
during validation exercises by comparing base scenarios with new scenarios.  

The BIM diagram has been organised in columns: 

● Changes: Short description of a change brought about by the OI Step 
● Performance Indicators / Metrics: Aspects which can be measured (or calculated from other 

metrics) to identify if the expected positive and negative impacts are realised. These need to 
be things that can be measured in the validation exercises. 

● Impacts (Positive or Negative): Describes the expected positive or negative impacts 
● KPA / TA Impacted: The KPA, which is related to the Impact, as defined in the SESAR2020 

Performance Framework 

The blue arrows show the relationship among the elements in the different columns 

The red/green/white arrows show the expected impact, applying the following code: 
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The following tables describe per main stakeholder each change that is expected to take place because 
of the use of the solution, the variation for each KPI and the KPA (focus area) impacted. 

A.1.1 Benefits impact mechanisms for ANSPs 

 

 

As mentioned above, the changes introduced by the CODA system: 

● Adaptability of ATM En-route system for executive controller 
o Adaptability of task allocation between operator and machine (automation, AI) 
o Adaptability of the interface used by the operator  

The changes introduced by the CODA system regarding ANSPs will have a positive impact in terms of 
cost efficiency, operational efficiency, and capacity. The reallocation of tasks between human-AI will 
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allow for more efficient flight management, as during peak workloads, certain tasks can be performed 
by artificial intelligence, such as calculating optimal routes, thereby increasing capacity and reducing 
costs. Sharing this workload will also have positive impacts in terms of Human Performance. In fact, 
when AI calculates excessive workloads, it helps the Air Traffic Controller (ATCO) by reducing fatigue, 
workload, and stress. Thanks to the adaptable HMI (Human-Machine Interface), the system will also 
enhance the ATCO's attention and Situational Awareness (SA) by deciding, based on the workload, 
which information to display. 

A.1.2 Benefits impact mechanisms for Airspace Users 

 
 
The changes brought by the CODA system also will impact Airspace users. The improved ATCOs’ 
performance will directly benefit also AU in terms of improved capacity and efficiency.  

 

 

 


